Converse magnetoelectric effect in (0-3) CoFe$_2$O$_4$-BaTiO$_3$(20/80) composite ceramics prepared by the organosol route

Morad Etier1, Vladimir V. Shvartsman1, Yanling Gao1, Joachim Landers2, Heiko Wende2, and Doru C. Lupascu1

1University of Duisburg-Essen, Institute for Materials Science, Essen, Germany
2University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany

Abstract — In this paper we report on a new approach to synthesize core/shell cobalt iron oxide/barium titanate composite nanoparticles combining the co-precipitation and organosol crystallization techniques. The weight fraction of CoFe$_2$O$_4$ and BaTiO$_3$ was 20% and 80% respectively. The obtained core/shell powder was used to sinter (0-3) composite multiferroic ceramics. Ferroelectric, magnetic, and magnetoelectric properties of the ceramics were studied. It was found that the value of the converse magnetoelectric coefficient, α_c, reaches $4.4\cdot10^{-12}$ s·m$^{-1}$ at the magnetic field $\mu_0 H_{dc} = 0.15$ T and $T = 285$ K.

Keywords: Multiferroics; magnetoelectric effect; composite.