Solving the robot-world hand-eye(s) calibration problem with iterative methods

Machine Vision and Applications

- Amy Tabb (1) Email author (amy.tabb@ars.usda.gov) View author's OrcID profile (View OrcID profile)
- Khalil M. Ahmad Yousef (2) View author's OrcID profile (View OrcID profile)

1. United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Laboratory, Kearneysville, USA
2. Computer Engineering Department, The Hashemite University, Zarqa, Jordan

Original Paper

First Online: 02 May 2017
Received: 28 July 2016
Revised: 23 March 2017
Accepted: 01 April 2017

DOI (Digital Object Identifier): 10.1007/s00138-017-0841-7

Cite this article as: Tabb, A. & Ahmad Yousef, K.M. Machine Vision and Applications (2017). doi:10.1007/s00138-017-0841-7

Abstract

Robot-world, hand-eye calibration is the problem of determining the transformation between the robot end-effector and a camera, as well as the transformation between the robot base and the world coordinate system. This relationship has been modeled as \(AX = ZB \), where \(X \) and \(Z \) are unknown homogeneous transformation matrices. The successful execution of many robot manipulation tasks depends on determining these matrices accurately, and we are particularly interested in the use of calibration for use in vision tasks. In this work, we describe a collection of methods consisting of two cost
function classes, three different parameterizations of rotation components, and separable versus simultaneous formulations. We explore the behavior of this collection of methods on real datasets and simulated datasets and compare to seven other state-of-the-art methods. Our collection of methods returns greater accuracy on many metrics as compared to the state-of-the-art. The collection of methods is extended to the problem of robot-world hand-multiple-eye calibration, and results are shown with two and three cameras mounted on the same robot.

Keywords

Robot Hand-eye Calibration Reconstruction

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

A. Tabb acknowledges the support of US National Science Foundation grant number IOS-1339211.

References

Tabb, A.: Shape from silhouette probability maps: reconstruction of thin objects in the presence of silhouette extraction and calibration error. In: 2013 IEEE conference on computer vision and pattern recognition (CVPR) (2013)

© Springer-Verlag Berlin Heidelberg (outside the USA) 2017

Personalised recommendations
1. Climate change threatens archaeologically significant ice patches: insights into their age, internal structure, mass balance and climate sensitivity
 Ódegård, Rune Strand... Uglietti, Chiara
 The Cryosphere (2017)

2. Mining Key Skeleton Poses with Latent SVM for Action Recognition
 Li, Xiaoqiang... Liao, Dong
 Applied Computational Intelligence and Soft Computing (2017)

3. Robust noise region-based active contour model via local similarity factor for image segmentation
 Niu, Sijie... Rubin, Daniel L.
 Pattern Recognition (2017)