Modelling desertification risk in the north-west of Jordan using geospatial and remote sensing techniques

JAWAD T. AL-BAKRIa, LAURA BROWNb, ZE’EV GEDALOFb, AARON BERGb, WILLIAM NICKLINGb, SAEB KHRESAT, MOHAMMAD SALAHATd and HANI SAOUBe

a Department of Land, Water and Environment, Faculty of Agriculture, The University of Jordan, Amman 11942, Jordan
b Department of Geography, University of Guelph, Guelph, ON, N1G 2W1, Canada
c Department of Natural Resources and the Environment, Jordan University of Science and Technology, Irbid 22110, Jordan
d Department of Natural Resources and Environment, Hashemite University, Zarqa 13115, Jordan
e Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman 11942, Jordan

(Received 8 March 2014; accepted 12 July 2014)

Remote sensing, climate, and ground data were used within a geographic information system (GIS) to map desertification risk in the north-west of Jordan. The approach was based on modelling wind and water erosion and incorporating the results with a map representing the severity of drought. Water erosion was modelled by the universal soil loss equation, while wind erosion was modelled by a dust emission model. The extent of drought was mapped using the evapotranspiration water stress index (EWSI) which incorporated actual and potential evapotranspiration. Output maps were assessed within GIS in terms of spatial patterns and the degree of correlation with soil surficial properties. Results showed that both topography and soil explained 75% of the variation in water erosion, while soil explained 25% of the variation in wind erosion, which was mainly controlled by natural factors of topography and wind. Analysis of the EWSI map showed that drought risk was dominating most of the rainfed areas. The combined effects of soil erosion and drought were reflected on the desertification risk map. The adoption of these geospatial and remote sensing techniques is, therefore, recommended to map desertification risk in Jordan and in similar arid environments.