Central simple superalgebras with anti-automorphisms of order two of the first kind

Ameer Jaber

Department of Mathematics, The Hashemite University, Zarqa, Jordan

ARTICLE INFO

Article history:
Received 1 December 2004
Available online 21 January 2010
Communicated by Michel Broué

Keywords:
Anti-automorphisms
Superalgebras
Central simple superalgebras
Superinvolutions
Brauer groups
Brauer–Wall groups

ABSTRACT

By a theorem of Albert’s, a central simple associative algebra has an involution of the first kind if and only if it is of order 2 in the Brauer group. Our main purpose is to develop the theory of existence of anti-automorphisms of order 2 of the first kind on finite dimensional central simple associative superalgebras over K, where K is a field of arbitrary characteristic. First we need to generalize the Skolem–Noether Theorem to the superalgebra case. Then we show which kind of finite dimensional central simple superalgebras have an anti-automorphism of order 2 of the first kind.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

An associative super-ring $R = R_0 + R_1$ is nothing but an associative $(\mathbb{Z}/2\mathbb{Z})$-graded ring. A $(\mathbb{Z}/2\mathbb{Z})$-graded ideal $I = I_0 + I_1$ of an associative super-ring R is called a superideal of R. An associative super-ring R is simple if it has no non-trivial superideals. Let R be an associative super-ring with $1 \in R_0$ then R is said to be a division super-ring if all nonzero homogeneous elements are invertible, i.e., every $0 \neq r_{\alpha} \in R_{\alpha}$ has an inverse r_{α}^{-1}, necessarily in R_{α}.

An associative $(\mathbb{Z}/2\mathbb{Z})$-graded K-algebra $A = A_0 + A_1$ is a finite dimensional central simple superalgebra over a field K, if $Z(A) \cap A_0 = K$, where $Z(A) = \{a \in A \mid ab = ba \ \forall b \in A\}$ is the center of A, and the only superideals of A are (0) and A itself.

By [6, Theorem 3] finite dimensional central simple associative superalgebras over a field K are isomorphic to $\text{End} V \cong M_n(D)$, where $D = D_0 + D_1$ is a finite dimensional associative division superalgebra over K, i.e., all nonzero elements of D_{α}, $\alpha = 0, 1$, are invertible, and $V = V_0 + V_1$ is an n-dimensional D-superspace.
If \(D_1 = \{0\} \), the grading of \(M_n(D) \) is induced by that of \(V = V_0 + V_1 \), \(A = M_{p+q}(D) \), \(p = \dim_D V_0, q = \dim_D V_1 \), so \(p + q \) is a non-trivial decomposition of \(n \). While if \(D_1 \neq \{0\} \) then the grading of
\(M_n(D) \) is given by \((M_n(D))_{\alpha} = M_n(D_{\alpha})\), \(\alpha = \bar{0}, \bar{1} \).

In [1] A. Elduque and O. Villa proved some results about superinvolutions over a field of characteristic not 2, which is not the case of this paper.

Theorem 1.1 (Division Superalgebra Theorem). (See [6].) If \(D = D_0 + D_1 \) is a finite dimensional associative division superalgebra over a field \(K \) then exactly one of the following holds where throughout \(\mathcal{E} \) denotes a finite dimensional associative division algebra over \(K \).

1. \(D = D_0 = \mathcal{E}, \) and \(D_1 = \{0\} \).
2. \(D = \mathcal{E} \otimes_k K[u], u^2 = \lambda \in K^\times, D_0 = \mathcal{E} \otimes K 1, D_1 = \mathcal{E} \otimes K u. \)
3. \(D = \mathcal{E} \) or \(M_2(\mathcal{E}), u \in D \) such that \(u^2 = \lambda \in K^\times, D_0 = C_D(u), D_1 = S_D(u), \) where \(C_D(u) = \{d \in D \mid du = ud\}, S_D(u) = \{d \in D \mid du = -ud\}, \) moreover, in the second case, \(u = \left(\begin{array}{cc} 0 & 1 \\ \lambda & 0 \end{array} \right) \) and \(K[u] \) does not embed in \(\mathcal{E} \).

Following [5] we say that a division superalgebra \(D \) is even if \(Z(D) \cap D_1 = \{0\} \), where \(Z(D) \) is the center of \(D \), i.e., \(D \) is even if its form is (i) or (iii), and that \(D \) is odd if its form is (ii). Also, if \(A = M_n(D) \) is a finite dimensional central simple superalgebra over a field \(K \), then we say that \(A \) is even \(K \)-superalgebra if \(D \) is an even division superalgebra and \(A \) is odd \(K \)-superalgebra if \(D \) is an odd division superalgebra.

2. Definitions and examples

Definition 1. An anti-automorphism of an associative superalgebra \(A \) is a graded additive map \(\ast : A \to A \) such that

\[(a_\alpha b_\beta)^* = (-1)^{\alpha \beta} b_\beta^* a_\alpha^* .\]

If \(A \) is a finite dimensional central simple superalgebra over a field \(K \), and \(\ast \) is an anti-automorphism of order two on \(A \), that is

\[a^{**} = a \quad \forall a \in A,\]

then \(\ast \) is called a superinvolution on \(A \). Since \(K = Z(A) \cap A_\bar{0}, \) \(K^* = K, \) that is \(\alpha^* \in K \forall \alpha \in K, \) so we say that \(\ast \) is a superinvolution of the first kind if the restriction \(\ast|_K = id_K, \) and it is a superinvolution of the second kind if the restriction \(\ast|_K = \sigma, \) where \(\sigma \) is a Galois automorphism of order 2 on \(K. \)

If \(\ast \) is a superinvolution on a superalgebra \(A \), then we say that \((A, \ast)\) is simple if and only if the \(\ast \)-stable superideals of \(A \) are \(\{0\} \) and \(A \) itself.

Definition 2. Let \(A \) be any \(K \)-superalgebra, we define the map \(\varphi : A \to A \) by

\[a_\alpha^\varphi = (-1)^\alpha a_\alpha \quad \forall a_\alpha \in A_\alpha \text{ and } \forall \alpha = \bar{0}, \bar{1}.\]

This map \(\varphi \) is a superalgebra automorphism, called the sign automorphism, since

\[(a_\alpha b_\beta)^\varphi = (-1)^{\alpha + \beta} a_\alpha b_\beta = a_\alpha^\varphi b_\beta^\varphi \]

for all \(a_\alpha \in A_\alpha \) and \(b_\beta \in A_\beta. \) The automorphism \(\varphi \) has order 2, if \(\text{Char}(K) \neq 2 \) (unless \(A_1 = 0 \), and \(\varphi = id_A \) if \(\text{Char}(K) = 2. \)
Definition 3. If $R = R_0 + R_1$ is an associative super-ring, a (right) R-supermodule M is a right R-module with a grading $M = M_0 + M_1$ as R_0-modules such that $m_α r_β \in M_{α+β}$ for any $m_α \in M_α$, $r_β \in R_β$, $α, β \in \mathbb{Z}_2$. An R-supermodule M is simple if $MR \neq \{0\}$ and M has no proper subsupermodule.

Following [6] we have the following definition of R-supermodule homomorphism.

Definition 4. Suppose M and N are R-supermodules. An R-supermodule homomorphism from M into N is an R_0-module homomorphism $h_γ : M → N$, $γ \in \mathbb{Z}_2$, such that $M_α h_γ \subseteq N_{α+γ}$ and

$$(m_α r_β) h_γ = (m_α h_γ) r_β \quad ∀ m_α \in M_α, \ r_β \in R_β, \ α, β \in \mathbb{Z}_2.$$

Definition 5. The opposite super-ring R^o of the super-ring R is defined to be $R^o = R$ as an additive group, with the multiplication given by

$$b_β \circ c_γ := (-1)^{βγ} c_γ b_β, \quad b_β \in R_β, \ c_γ \in R_γ.$$

Definition 6. Let $A = A_0 + A_1, B = B_0 + B_1$ be associative superalgebras. Then the graded tensor product

$$A \hat{⊗}_K B = [(A_0 \otimes B_0) \oplus (A_1 \otimes B_1)] \oplus [(A_0 \otimes B_1) \oplus (A_1 \otimes B_0)]$$

where the multiplication on $A \hat{⊗}_K B$ is induced by

$$(a_α \otimes b_β)(c_γ \otimes d_δ) = (-1)^{βγ} a_α c_γ \otimes b_β d_δ, \quad a_α \in A_α, \ c_γ \in A_γ, \ b_β \in B_β, \ d_δ \in B_δ.$$

If A and B are associative superalgebras, then $A \hat{⊗}_K B$ is an associative superalgebra.

So, if A is a superalgebra then A^o is just the opposite super-ring of A; one can easily show that if A is a central simple associative superalgebra over a field K, then A^o is also a central simple associative superalgebra over K, and by [5] $A \hat{⊗}_K A^o \cong M_n(K)$, where $n = \dim_K(A)$.

Examples (of associative superalgebras). (i) Let K be a field of characteristic not 2, and let $λ, μ \in K \setminus \{0\}$. Then the quaternion algebra

$$A = K1 + Ku + Kv + Kuv,$$

where $u^2 = λ, v^2 = μ, \text{ and } uv = -vu$, is a central simple superalgebra $A = (λ, μ)$ with the grading

$$A_0 = K1 + Kuv, \quad A_1 = Ku + Kv.$$

(ii) Let K be a field of characteristic 2, and let $λ \in K \setminus \{0, α^2 | α \in K\}$. Then for $u = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $w = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$,

$$A = K[u] \oplus K[u]w$$

is a central simple division superalgebra over K (A is a quaternion algebra over K of characteristic 2) with grading

$$A_0 = K[u], \quad A_1 = K[u]w.$$

(iii) The algebra of $p + q \times p + q$ matrices $M_{p+q}(D)$, where D is a division algebra, can be viewed as an associative superalgebra by taking the diagonal components $M_p(D)$ and $M_q(D)$ as the even part.
and the off-diagonal components as the odd part; this is an example of simple associative superalgebra.

(iv) A superspace over K is a left K-vector space which is \mathbb{Z}_2-graded $V = V_0 \oplus V_1$. The associative algebra $\text{End}_K V = [\text{End}_K V]_0 + [\text{End}_K V]_1$, where

$$[\text{End}_K V]_\alpha := \{a \in \text{End}_K V \mid v_\beta a \in v_{\alpha + \beta}\},$$

is an associative superalgebra. A symmetric superform on V is a graded bilinear form

$$(.,.) : V \times V \to K, \quad V = V_0 \perp V_1,$$

which is symmetric on V_0 and skew-symmetric on V_1. The symmetric superform $(.,.)$ is nondegenerate if $(v_\alpha, v) = \{0\}$ implies that $v_\alpha = 0$.

One can easily check that a nondegenerate symmetric superform on a finite dimensional V induces a superinvolution \ast on $\text{End}_K V$ via

$$(v_\alpha a_\gamma, w_\beta) = (-1)^{\beta\gamma}(v_\alpha, w_\beta a_\gamma^\ast), \quad \text{for all } v_\alpha, w_\beta \in V.$$

Definition 7. Two finite dimensional central simple superalgebras A and B over a field K are called similar ($A \sim B$) if there exist graded K-vector spaces $V = V_0 \oplus V_1, W = W_0 \oplus W_1$, such that $A \hat{\otimes}_K \text{End}_K V \cong B \hat{\otimes}_K \text{End}_K W$ as a K-superalgebra.

Similarity is obviously an equivalence relation. The set of similarity classes will be denoted by $\text{BW}(K)$ (the Brauer–Wall group of K). If $[A]$ denotes the class of A in $\text{BW}(K)$ by using [5, Chap. 4, Theorem 2.3 (3)] the operation $[A][B] = [A \hat{\otimes}_K B]$ is well defined, and makes the set of similarity classes of finite dimensional central simple superalgebras over K into a commutative group, $\text{BW}(K)$, where the class of the matrix algebras $M_{p+q}(K)$ is a neutral element for this product.

3. Existence of a superinvolution of the first kind

Lemma 3.1. If A is an even central simple superalgebra over field K. Then the sign automorphism φ is an inner automorphism. If A is odd and $\text{Char}(K) \neq 2$ then φ is not inner.

Proof. By [8, p. 438], $A = M_n(D)$, where D is a finite dimensional even division superalgebra over K.

If $\text{Char}(K) = 2$ then $\varphi = \text{id}_A$, and hence its corresponds to conjugating by $u = I_n$, where I_n is the $n \times n$ identity matrix.

Assume that $\text{Char}(K) \neq 2$, if $A = M_{p+q}(D)$ where D is a finite dimensional central simple division algebra over K. Then $a^\varphi = u a u^{-1}$ where $u = \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix}$. If $A = M_n(D)$ where D is a finite dimensional even division superalgebra with non-trivial grading over K. Then $a^\varphi = u I_n a u^{-1} I_n$ where u is as defined in type (iii) in Theorem 1.1.

If A is odd then $A = M_{n}(D)$ where $D = D_0 + D_0 u$, $u^2 = \lambda \in K^\times$, is an odd division superalgebra. If b_β is an invertible element in A_β such that $a^\varphi = b_\beta a_\alpha b_\beta^{-1}$ for all $a_\alpha \in A_\alpha$ then $u^\varphi = -u = b_\beta u b_\beta^{-1} = u$ since $u \in Z(A)$, a contradiction. \(\square\)

Theorem 3.2 (Skolem–Noether Theorem). Let B be a central simple superalgebra over the field K, and let A be a finite dimensional simple subsuperalgebra over K and containing it. Then any superalgebra homomorphism f of A into B can be extended to an inner automorphism of B if B is even. If B is odd then f or $f\varphi$ can be extended to an inner automorphism but not both of them, where φ is the sign automorphism.
Proof. Let \(E = B^\circ \otimes_K A \) where \(B^\circ \) is the opposite superalgebra of \(B \), then by [5, Theorem 2.3 (2)] \(E \) is a simple superalgebra over \(K \). Using the homomorphism \(f \) of \(A \) into \(B \), we make \(B \) into a right \(E \)-supermodule in two ways. In the first way, the action is \(x_{\gamma}.(b_\beta \otimes a_\alpha) = (-1)^{\beta\gamma} b_\beta x_{\gamma} a_\alpha \) and the second action is \(x_{\gamma}.(b_\beta \otimes a_\alpha) = (-1)^{\beta\gamma} b_\beta x_{\gamma} a_\alpha^f \), where \(f \) is the given superalgebra homomorphism of \(A \) into \(B \). Then \(B \) is a right \(E \)-supermodule under these two actions. By [6, Proposition 4], these supermodules are isomorphic. Hence there exists an isomorphism \(s_\delta \) such that
\[
(\gamma) x_{\gamma}.(b_\beta \otimes a_\alpha) = s_\delta(x_{\gamma}).(b_\beta \otimes a_\alpha^f)
\]
Therefore
\[
(-1)^{\beta\gamma} s_\delta(b_\beta x_{\gamma} a_\alpha) = (-1)^{\beta(\gamma + \delta)} b_\beta s_\delta(x_{\gamma}) a_\alpha^f
\]
and so
\[
s_\delta(b_\beta x_{\gamma} a_\alpha) = (-1)^{\beta\delta} b_\beta s_\delta(x_{\gamma}) a_\alpha^f.
\]
For \(b_\beta = 1 \), \(s_\delta(x_{\gamma} a_\alpha) = s_\delta(x_{\gamma}) a_\alpha^f \), so if \(x_{\gamma} = 1 \), then
\[
s_\delta(a_\alpha) = s_\delta(1) a_\alpha^f.
\]
Now, in (3.1) let \(a_\alpha = 1 \), then \(s_\delta(b_\beta x_{\gamma}) = (-1)^{\beta\delta} b_\beta s_\delta(x_{\gamma}) \) and so \(x_{\gamma} = 1 \), yields \(s_\delta(b_\beta) = (-1)^{\beta\delta} b_\beta s_\delta(1) \), but from (3.2),
\[
(s_\delta(1)) b_\beta^f = (-1)^{\beta\delta} b_\beta s_\delta(1)
\]
and therefore
\[
b_\beta^f = (-1)^{\beta\delta} (s_\delta(1))^{-1} b_\beta s_\delta(1).
\]
For \(\delta = 0 \)
\[
b_\beta^f = (s_\delta(1))^{-1} b_\beta s_\delta(1).
\]
For \(\delta = 1 \)
\[
b_\beta^f = (s_\delta(1))^{-1} b_\beta s_\delta(1).
\]
For \(B \) even, \(\varphi \) is an inner automorphism but not for odd \(B \). Therefore \(f \) can be extended to an inner automorphism on \(B \) if it is even. If \(B \) is odd then \(f \) or \(f \varphi \) is inner but not both of them. \(\square \)

In [6, Theorem 3] Michel Racine proved that finite dimensional associative central simple superalgebras \(A = M_n(\mathcal{D}) \) over a field \(K \) are primitive superalgebras, and then he proved in [6, Theorem 7] that a primitive superalgebra \(A = M_n(\mathcal{D}) \) has a superinvolution if and only if \(\mathcal{D} \) has. Thus we have the following result.

Theorem 3.3. A finite dimensional associative central simple superalgebra \(A = M_n(\mathcal{D}) \) over a field \(K \) has a superinvolution * if and only if \(\mathcal{D} \) has.

If \(A = M_n(\mathcal{D}) \) is a finite dimensional central simple superalgebra over a field \(K \), where \(\mathcal{D} \) is a finite dimensional division superalgebra with non-trivial grading over \(K \), that is \(\mathcal{D}_1 \neq [0] \), then by Theorem 3.3, it is enough to classify the existence of superinvolutions on \(\mathcal{D} \) to ascertain the existence of superinvolutions on \(A \).
Now for a finite dimensional division superalgebra \mathcal{D} over K, we have the following result.

Theorem 3.4.

(1) Let $\mathcal{D} = \mathcal{D}_0 + \mathcal{D}_0 u$ be an odd division superalgebra. If K is a field of characteristic not 2 then \mathcal{D} doesn’t admit a superinvolution of the first kind.

(2) If \mathcal{D} is an even division superalgebra with non-trivial grading over any field K of characteristic not 2 then \mathcal{D} doesn’t admit a superinvolution of the first kind.

Proof. (1) Let $*$ be a superinvolution of \mathcal{D}, then

$$(u^2)^* = -(u^*)^2 \quad \text{implies that} \quad \lambda^* = -\lambda \in K.$$

So $*$ is a superinvolution of the second kind.

(2) Now for an even \mathcal{D} we give a proof by contradiction.

Assume that \mathcal{D} admits a superinvolution $*$ of the first kind and let $\sim = *|_{\mathcal{D}_0}$. By [6, Proposition 10] \mathcal{D}_1 contains a $0 \neq v = v^*$ so let $\phi: \mathcal{D} \to \mathcal{D}$ be defined by $x^\phi = v xv^{-1}$. If \sim is an involution on \mathcal{D}_0 of the first kind then $\sim \phi$ is an involution on \mathcal{D}_0 of the second kind and vice versa.

Assume that \sim is of the first kind, we have

$$\mathcal{H}(K(u), \sim \phi) = \{ x \in K(u) \mid \sim \phi x = x \} = K,$$

where u is as defined in type (iii) in Theorem 1.1. Let $z = \frac{u \otimes u}{\lambda} \in \mathcal{D}_0 \otimes_K K(u)$, and let $e = \frac{1 - z}{2}$, then $(\mathcal{D}_0 \otimes_K K(u))e$ is a $(\sim \otimes 1)$-stable proper ideal in $\mathcal{D}_0 \otimes_K K(u)$. Therefore $(\mathcal{D} \otimes_K K(u), \sim \otimes 1)$ is as in [6, Theorem 12]. Now $\mathcal{D} \otimes_K K(u) \cong M_n(C')$, where C' is a central simple division algebra over $K(u)$, the grading on $M_n(C')$ is not inherited from C', because if the grading is inherited from C' then $Z(M_n(C'))$ is a field and equal to $Z(\mathcal{D}_0 \otimes_K K(u)) = K(u) \otimes_K K(u)$, a contradiction. So $\mathcal{D} \otimes_K K(u) \cong M_{p+q}(C')$, where $n = p + q$, but

$$\dim_{K(u)}(\mathcal{D}_0 \otimes_K K(u)) = \dim_{K(u)}(\mathcal{D}_1 \otimes_K K(u)),$$

hence $p = q$, and therefore $\mathcal{D} \otimes_K K(u) \cong M_{2p}(C')$, which implies that

$$\mathcal{D}_0 \otimes_K K(u) \cong M_p(C') \oplus M_p(C'),$$

by [6, Proposition 14], $\sim \otimes 1$ restricts to an orthogonal involution on one of the summands of $\mathcal{D}_0 \otimes_K K(u)$ and to a symplectic involution on the other summand. Thus

$$\dim_{K(u)} \mathcal{H}(\mathcal{D}_0 \otimes_K K(u), \sim \otimes 1) = \dim_{K(u)} \mathcal{H}(M_p(C'), \sim \otimes 1) + \dim_{K(u)} S(M_p(C'), \sim \otimes 1)$$

$$= \dim_{K(u)} M_p(C')$$

$$= \dim_{K(u)} \mathcal{D}_0$$

where $S(M_p(C'), \sim \otimes 1) = \{ x \in M_p(C') \mid x^{\sim \otimes 1} = -x \}$. But this is impossible since

$$\dim_{K(u)} \mathcal{H}(\mathcal{D}_0 \otimes_K K(u), \sim \otimes 1) = \dim_{K(u)} \mathcal{H}(\mathcal{D}_0, \sim) \otimes_K K(u)$$

$$= \dim_{K} \mathcal{H}(\mathcal{D}_0, \sim)$$

$$= 2 \dim_{K(u)} \mathcal{H}(\mathcal{D}_0, \sim).$$
Now if ~ is of the second kind then
\[a + bν^{-1} \mapsto \tilde{a}^\phi + \tilde{b}ν^{-1}, \quad a, b \in D_0 \]
is another superinvolution on D whose restriction to \(D_0 \) is of the first kind and will lead to the contradiction above. \(\square \)

Thus, if \(K \) is a field of characteristic not 2 and \(A \) is a \(K \)-superalgebra with a superinvolution of the first kind (say \(* \)) then by Theorem 3.4, \(A = M_{p+q}(C) \) where \(C \) is a finite dimensional division algebra over \(K \). Moreover, if \((A_0, *|_{A_0})\) is simple then by [6, Proposition 13] \((A, \star)\) is isomorphic to \(M_{2p}(C) \) with the superinvolution \(\star \) given by

\[
\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \star = \left(\begin{array}{cc} \tilde{a} & -\tilde{b} \\ \tilde{c} & \tilde{a} \end{array} \right),
\]

for \(a, b, c, d \in M_p(C) \), but if \((A_0, *|_{A_0})\) is not simple then by [6, Proposition 14] \(A_0 = B_1 \oplus B_2 \), where \(B_1 = M_p(C) \) and \(B_2 = M_q(C) \) and one of \((B_1, *|_{B_1})\) is of orthogonal type and the other of symplectic type (i.e., at least one of \(p \) and \(q \) is even). Therefore, we have the following result, but first of all we recall Albert’s Lemma in the algebra case: if \(\mathcal{A} \) is a finite dimensional central simple algebra over a field \(K \). Then \(\mathcal{A} \) admits an involution of the first kind if and only if \(\mathcal{A} \cong \mathcal{A}^\circ \).

Theorem 3.5.

(1) Let \(K \) be a field of characteristic not 2, and let \(C \) be a finite dimensional central division algebra over \(K \). Let \(A = M_{p+q}(C) \) be a \(K \)-superalgebra, where \(p \) or \(q \) is even if \(p \neq q \). Then \(A \) has a superinvolution of the first kind if and only if \(A \) is of order 2 in the Brauer–Wall group \(BW(K) \).

(2) Let \(K \) be a field of characteristic 2, and let \(C \) be a finite dimensional central division algebra over \(K \). Let \(A = M_{p+q}(C) \) be a \(K \)-superalgebra. Then \(A \) has a superinvolution of the first kind if and only if \(A \) is of order 2 in the Brauer–Wall group \(BW(K) \).

Proof. (1) If \(A \) has a superinvolution of the first kind then \(A \cong A^\circ \), therefore \(A \) is of order 2 in the \(BW(K) \).

Conversely, if \(\mathcal{A} \) is of order 2 in the Brauer–Wall group \(BW(K) \), then \(C \) is of order 2 in the Brauer group \(Br(K) \) and hence by Albert’s Theorem \(C \) has an involution of the first kind, so if \(p = q \) then by [6, Proposition 13] \(A \) has a superinvolution of the first kind, and if \(p \neq q \) then by [6, Proposition 14] \(A \) has a superinvolution of the first kind.

(2) If \(A \) is of order 2 in the Brauer–Wall group \(BW(K) \), then \(C \) is of order 2 in the Brauer group \(Br(K) \), and hence by Albert’s Theorem \(C \) has an involution of the first kind (say \(\star \)). Therefore, \(t \otimes \star \), where \(t \) is the transpose involution on \(M_{p+q}(K) \), is a superinvolution on

\[
A \cong M_{p+q}(K) \otimes_K C.
\]

Conversely, if \(A \) has a superinvolution of the first kind, then clearly, \(A \) is of order 2 in the Brauer–Wall group \(BW(K) \). \(\square \)

Moreover, we will give an example of a superalgebra \(A \) of order 2 in the Brauer–Wall group \(BW(K) \) (i.e., \(A \cong A^\circ \)) that doesn’t have a superinvolution of the first kind.

Example. Let \(K \) be any field of characteristic not 2 such that \(i = \sqrt{-1} \in K \). Let \(\lambda, \mu \in K \setminus \{0\} \) and let \(A = (\lambda, \mu) \) be the quaternion algebra on two generators \(u, v \) with defining relations: \(u^2 = \lambda, \ v^2 = \mu, \ uv = -vu \), as defined in Example (i). Then

\[
A = K \oplus Ku \oplus Kv \oplus Kuv \quad \text{where } A_0 = K \oplus Ku, \ A_1 = Kv \oplus Kuv,
\]
is a division superalgebra with basis \{1, u, v, uv\}. By Theorem 3.4, A doesn’t have a superinvolution of the first kind but it is of order 2 in the Brauer–Wall group \(\text{BW}(K)\). To see this define the \(K\)-linear map \(\ast: A \to A\) as follows: \(\alpha^x = x\) \(\forall x \in K\); \(u^x = u\); \(v^x = iv\); \((uv)^x = ivu = -iv\) then \(\ast\) is a \(K\)-anti-automorphism on \(A\), which implies that \(A\) is of order 2 in the Brauer–Wall group \(\text{BW}(K)\).

Let \(D = D_0 + D_0v\) be an even division superalgebra with a non-trivial grading (i.e., \(v \neq 0\) over the field \(K\) of characteristic 2, a \(K\)-anti-automorphism \(J\) is simply an isomorphism \(\cong\) (or: the opposite). Fix such a \(J\). Then we may assume \(x^J = x \forall x \in D_0\). For if not, we can define another \(K\)-anti-automorphism \(I\) on \(D\) such that \(x^I = x \forall x \in D_0\). To show this assume that \(J^2|_{D_0} \neq id_{D_0}\) but since

\[
J|_{D_0}: D_0 \cong D_0^0,
\]

so \(x^J = gxg^{-1}\), where \(g \in D_0\), and \(g^Jg^{-1} = 1 \quad[7, \text{Lemma 8.2}]. \) Let \(\alpha = (1 + \gamma)^{-1} (\gamma \neq -1)\). An easy computation shows that \(x^J = \alpha x^J \alpha^{-1} \forall x \in D\) is another graded \(K\)-anti-automorphism on \(D\), and \(x^J = x \forall x \in D_0 \quad[7, \text{Lemma 8.2}]. \) Therefore, we may fix a \(K\)-anti-automorphism \(J\) on \(D\) such that \(x^J = x \forall x \in D_0\).

Lemma 3.6. If an even division superalgebra \(D\) with non-trivial grading over the field \(K\) of characteristic 2, admits a \(K\)-anti-automorphism \(J\) such that \(x^J = x \forall x \in D_0\) then \(J^2\) is an inner automorphism, and \(x^J = bx^{-1}\) for \(b \in Z(D_0)\).

Proof. The map \(J^2\) is a \(K\)-automorphism on \(D\), hence an inner automorphism \(x^J = bx^{-1}\) for a suitable invertible element \(b = b_0 + b_1 \in D\). If \(\text{Char}(K) = 2\) then \(u^J = u = (b_0 + b_1)u(b_0 + b_1)^{-1} = (ub_0 + (u + 1)b_1)(b_0 + b_1)^{-1} = u\) implies that \((u(b_0 + b_1) + b_0(b_0 + b_1)^{-1}) = u\) and so \(u + b_1(b_0 + b_1)^{-1} = 0\) implies that \(b_1 = 0\). Thus \(b = b_0 \in D_0\). But \(x^J = x \forall x \in D_0\), so \(b \in Z(D_0)\).

Lemma 3.7. If \(D\) is as in the lemma above and if \(D_0^J \cong D\) and \(D_0^J \cong D\) such that \(J^2|_{D_0} = J^2|_{D_0} = id_{D_0}\), where \(I\) and \(J\) are \(K\)-anti-automorphisms on \(D\). Then there exists \(a_\alpha \in D_\alpha\) such that \(x^I = a_\alpha x^I a_\alpha^{-1} \forall x \in D\).

Proof. (\(\text{Char} K = 2\)). Since \(u^I \in Z(D_0) = (K(u) = K(u)\) then \(u^I = \alpha + \beta u\), also \(v^I = dv \in D_0\) and \(v^I = d_1\), this implies that \(v^Iv^I = \alpha + \beta uv + uv\) \(\alpha + \beta(1 + u) = \alpha + \beta + \beta u = \beta + u^I\), hence \(v^Iv^I = (\alpha + u^I) = (\alpha + u + u = u)\) we have \(\alpha^I + \alpha + 0 = \alpha\) and \(\alpha^I = \alpha \in K\). If \(\alpha = 0\) then \(u^I = u\); if not then replace \(u\) by \(\frac{1}{\alpha} u\) we get \(u^I = 1 + u\). Therefore, we have two cases: \(u^I = u\) or \(u^I = 1 + u\), let \(u^I = \gamma + u\) for some \(\gamma \in K\). Now, for \(u^I = 1 + u\) and by using the Skolem–Noether Theorem we have

\[
u^I = \gamma + u = au^Ia^{-1} = a(1 + u)a^{-1}
\]

\[
= \alpha_{0\alpha} + a_{1\alpha}(1 + u)(\alpha_{0\alpha} + a_{1\alpha})^{-1}
\]

\[
= 1 + (\alpha_{0\alpha} + a_{1\alpha})u(\alpha_{0\alpha} + a_{1\alpha})^{-1}
\]

\[
= 1 + (u(\alpha_{0\alpha} + a_{1\alpha}) + a_{1\alpha}(\alpha_{0\alpha} + a_{1\alpha})^{-1}
\]

\[
= 1 + a_{1\alpha}(\alpha_{0\alpha} + a_{1\alpha})^{-1}
\]

so \(\gamma + 1 = a_{1\alpha}(\alpha_{0\alpha} + a_{1\alpha})^{-1}\) and therefore \((\gamma + 1)(\alpha_{0\alpha} + a_{1\alpha}) = a_{1\alpha}\) and so \(\gamma + 1) = \gamma a_{1\alpha}\) which implies that \(\gamma a_{1\alpha} = 0\) so \(\gamma = 0\) or \(a_{1\alpha} = 0\) but if \(\gamma = 0\) then \(a_{0\alpha} = 0\). Therefore \(a = a_\alpha \in D_\alpha\).
For $u^J = u$, again by using the Skolem–Noether Theorem, we have

$$u^J = \gamma + u = au^Ja^{-1} = au^{-1}$$

$$= (a_0 + a_1)u(a_0 + a_1)^{-1}$$

$$= (ua_0 + (u + 1)a_1)(a_0 + a_1)^{-1}$$

$$= (u(a_0 + a_1) + a_1)(a_0 + a_1)^{-1}.$$

So, $\gamma + u = u + a_1(a_0 + a_1)^{-1}$ and therefore $\gamma(a_0 + a_1) = a_1$ and so $(\gamma + 1)a_1 = \gamma a_0$ which implies that $\gamma a_0 = 0$ so $\gamma = 0$ or $a_0 = 0$ but if $\gamma = 0$ then $a_1 = 0$. Therefore $a = a_0 \in D_\alpha$. \qed

Lemma 3.8. Let $b \in D_0$ be as in Lemma 3.6. Then:

(i) $bb^J = b^Jb \in K^\times$.

(ii) bb^J does not depend on the choice of J and b.

Proof. (i) The equation $x_{a}^2 = bx_\alpha b^{-1}$ implies

$$x_{a}^3 = (x_{a}^2)^J = (bx_\alpha b^{-1})^J = b^{-J}x_{a}^J b^J$$

$$= (x_{\alpha}^J)^2$$

$$= bx_\alpha b^{-1}.$$

$\Rightarrow bx_\alpha b^{-1} = b^{-J}x_\alpha b^J \Rightarrow x_{\alpha}^J = b^{-1}b^{-J}x_\alpha b^J b$. Hence $b^Jb \in K$. Therefore $(b^Jb)^Jbb^J = b(b^Jb)^Jb^J = b(b^Jb)bb^J = (bb^J)(bb^J) \Rightarrow b^Jb = bb^J$.

(ii) Let I be another K-anti-automorphism on D such that $x^I = x \forall x \in D_0$ then, by Lemma 3.7, there exists $a_\alpha \in D_\alpha$ such that $x^I = a_\alpha x^I a_\alpha^{-1} \forall x \in D$.

For $\alpha = 0$:

$$x_{\alpha}^2 = a_0(a_0x_\alpha a_0^{-1})^Ja_0^{-1}$$

$$= a_0a_0^{-J}bx_\alpha b^{-1}a_0^Ja_0^{-1}.$$

Claim. $(a_0a_0^{-J}b)(a_0a_0^{-J}b)^I = bb^J$.

Proof of the claim.

$$(a_0a_0^{-J}b)(a_0a_0^{-J}b)^I = a_0a_0^{-J}ba_0(a_0a_0^{-J}b)^Ja_0^{-1}$$

$$= a_0a_0^{-J}ba_0b^{-1}a_0^{-1}b^{-1}a_0^Ja_0^{-1}$$

$$= b^Jb. \quad \square$$
For $\alpha = \bar{1}$:

$$x_{\beta}^2 = a_1(a_1 x_{\beta} a_1^{-1}) J a_1^{-1}$$

$$= (-1)^{(1+\beta)} (-1)^{\beta} a_1(a_1^{-1}) J bx_{\beta} b^{-1} a_1^{-1} a_1^{-1}$$

$$= -a_1(a_1^{-1}) J bx_{\beta} b^{-1} a_1^{-1}.$$

Since $(a_1 a_1^{-1}) J 1 = 1 = -(a_1^{-1}) J a_1^{-1} = 1$, we have $(a_1^{-1}) J = -(a_1 J)^{-1}$ and therefore

$$x_{\beta}^2 = a_1(a_1 J)^{-1} bx_{\beta} b^{-1} a_1^{-1} a_1^{-1}.$$

Claim. $(a_1(a_1 J)^{-1} b)(a_1(a_1 J)^{-1} b)^ J = bb J.$

Proof of the claim.

$$(a_1(a_1 J)^{-1} b)(a_1(a_1 J)^{-1} b)^ J = a_1(a_1 J)^{-1} b a_1(a_1 J)^{-1} b)^ J a_1^{-1}$$

$$= a_1(a_1 J)^{-1} b a_1(-1)^{b J} (-1)^{b J} a_1^{-1} a_1^{-1} a_1^{-1}$$

$$= a_1(a_1 J)^{-1} b a_1 b a_1^{-1} b a_1^{-1} a_1^{-1}$$

$$= b J b$$

$$= bb J. \quad \square$$

Theorem 3.9. Let $D = D_0 + D_0 v$ be an even central division superalgebra over a field K of characteristic 2 such that $v \neq 0$, and let $J : D \rightarrow D$ be any K-anti-automorphism on D such that $x J^2 = b x b^{-1}$ for all $x \in D$ where $b \in Z(D_0)$. Then D has a superinvolution of the first kind if and only if

$$bb J \in N(K^\times) = \{ a^2 \mid \alpha \in K^\times \}.$$

Proof. If $bb J = \alpha^2$, where $\alpha \in K^\times$, then $(\frac{b J b}{\alpha} J)^ J = 1$, therefore we may assume that $bb J = 1$. If $b = -1$, then we are finished since J is a superinvolution of the first kind. Otherwise a trivial computation shows that

$$I : D \rightarrow D, \quad x \mapsto (1 + b)^{-1} x J (1 + b)$$

is a superinvolution of the first kind on D.

Conversely, if $*$ is a superinvolution of the first kind on D then choose $b = 1. \quad \square$

Theorem 3.10. If $D = D_0 + D_0 v$ is a non-trivial even central division superalgebra over a field K of characteristic 2 such that $D \cong D^\circ$ then D has a superinvolution of the first kind.

Proof. Since $D \cong D^\circ$, let $J : D \rightarrow D$ be any K-anti-automorphism on D such that $x J^2 = b x b^{-1}$ for all $x \in D$ where $b \in Z(D_0)$. Also, since $\text{Char}(K) = 2$, $(xy)^ J = y J x J$ for all $x, y \in D$, thus, J is a K-anti-automorphism on the central simple algebra D, which means that D is of order 2 in the Brauer group $\text{Br}(K)$, therefore, by Albert’s Theorem, D has an involution of the first kind which implies that $bb J \in N(K^\times) = \{ a^2 \mid \alpha \in K \}$, and so by Theorem 3.9, D has a superinvolution of the first kind. \square
Thus, we have the following result:

Theorem 3.11. Let $D = D_{\overline{0}} + D_{\overline{0}}v$ be a non-trivial even central division superalgebra over a field K of characteristic 2 then D has a superinvolution of the first kind if and only if D is of order 2 in the Brauer–Wall group $BW(K)$.

Theorem 3.12. Let $D = D_{\overline{0}} + D_{\overline{0}}v$, where $v \in Z(D)$ be a non-trivial odd central division superalgebra over the field K of characteristic 2. Then D has a superinvolution of the first kind if and only if D is of order 2 in the Brauer–Wall group $BW(K)$.

Proof. If D is of order 2 in the Brauer–Wall group $BW(K)$, then $D_{\overline{0}}$ is of order 2 in the Brauer group $Br(K)$, and hence by Albert’s Theorem $D_{\overline{0}}$ has an involution (say J) of the first kind. Now, let $*: D \to D$ be defined by $(a+bv)^* = a^J + b^Jv$, one can easily check that $*$ is a superinvolution of the first kind on D.

Conversely, if D has a superinvolution of the first kind, then $D \cong D^\circ$ which means that D is of order 2 in the Brauer–Wall group $BW(K)$. □

Theorems 3.2 and 3.4 have been proved in my thesis. (See [2, Theorem 2.1.5, Lemma 2.1.8].)

In [3, Theorem 3.3] I proved that an even division superalgebra has a pseudo-superinvolution of the first kind if and only if it is of order 2 in the Brauer–Wall group. Also in [3, Theorem 3.4] I proved that an odd division superalgebra D has a pseudo-superinvolution of the first kind if and only if $\sqrt{-1} \in D$ and it is of order 2 in the Brauer–Wall group. This result is also proved in [1, Theorem 27]. Finally, some results about existence of superinvolution of the second kind have been introduced in [1] and [4].

References