Obesity and Serum Uric Acid

Omar Khalid Alboqai, PhD* Asad Abu Odeh, MD**
Huda M. Al Hourani, PhD*** Faisal Al-Qudah, MD**

Objective: To study the serum level of uric acid among obese individuals and to identify the dominant risk factors for elevated serum uric acid.

Setting: International Academy Rehabilitation Sport, Irbid – Jordan.

Design: Cross-Sectional study.

Method: Three hundred healthy adult males aged 30-50 years were included in the study. The sample was divided into approximately equal three groups based on obesity categories. Plasma uric acid, total cholesterol, triglycerides, low density lipoprotein- cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), fasting blood glucose (FBG), blood pressure, height, weight and waist circumference were measured and a pre-tested. Structured questionnaire was administered by trained-interviewer.

Result: A graded increase of serum uric acid rates was observed with increased body weight and waist circumference. The serum uric acid among overweight and obese subjects compared with non-obese subjects were 5.6 and 10.8 times respectively.

Logistic regression analysis showed that the amount of body fat and distribution were the major risk factors for elevated serum uric acid; other factors such as obesity during adolescence, calories from dietary protein ≥16.5% and creatinine play a minor role.

Conclusion: Elevated serum uric acid is more prevalent in obese individuals. Obesity is the dominant risk factor for elevated serum uric acid.

Bahrain Med Bull 2007; 29(3):

* Department of Clinical Nutrition
 College of Royal Medical Sciences for Allied Health Professions
** Royal Medical Services
*** Department of Clinical Nutrition and Dietetics
 Faculty of Allied Health Sciences
 The Hashemite University
 Jordan
Obesity may be defined as a disease of extensive fat accumulation to the extent that health and wellbeing are affected. However, the degree of excess fat, its distribution within the body, duration and the associated health consequences vary considerably between obese individuals. Obesity has long been recognized as an associated factor with a variety of adverse health consequences; chiefly among them diabetes, hypertension, dyslipidaemia, increased cardiovascular events, and elevated serum uric acid. These patients are also more likely to present with silent disease and as a cluster of metabolic syndrome. The most commonly recognized risk factors in the metabolic syndrome are highly correlated with each other and are pre-sumed to reflect common metabolic pathway and they interact to increase risk in a synergistic fashion. Furthermore, several epidemiological studies showed a positive association between obesity and hyperuricemia. Increases in serum uric acid concentration showed positive association with body mass index (BMI), waist hip ratio (WHR), Waist/thigh girth, and sub-scapula triceps skin fold ratios. The risk of gout was increased among men who had been overweight in adolescence. It has been suggested that other factors, such as muscle mass, may also play a role in producing high serum uric acid. Weight reduction has been associated with modest lowering of serum urate.

Despite the growing body of evidence of these risks, the prevalence of obesity continues to increase worldwide including Jordan.

Recent studies conducted in Jordan showed high prevalence of diabetes mellitus, hypertension and dyslipidemia. Cardiovascular disease is the leading cause of death in Jordan as reported by annual reports of Royal Medical Services, (RMS, 2001). No data exist in Jordan regarding elevated serum uric acid.

The aim of this study is to evaluate the serum level of uric acid among obese individuals and to identify the dominant risk factors for elevated serum uric acid.

METHOD

The subjects were selected by cross sectional study from Sareeh area in the Northern of Jordan. A total sample size was 350 out of 400 of eligible subjects responded. Inclusion criteria of the study were subjects who were apparently healthy, or had no clinical conditions known to affect carbohydrate, protein or lipid metabolism or body composition. The age was 30-50 years, and their body mass index (BMI) was within WHO categories. The remaining subjects (306: 103 BMI< 25 kg/m², 100 BMI ≥ 25 <30 kg/m² and 103 BMI ≥ 30 kg/m²) were involved in the final study sample on which the statistical analysis would be carried out.

All subjects fasted overnight before blood sampling, anthropometric measurements which include weight, height, waist and hip circumferences were performed. Blood pressure (BP), and serum uric acid, were measured in all subjects. BMI was calculated as body weight (kg) divided by height squared (m²). Central obesity was categorized into three groups as indicated by waist circumference: normal<94 cm; moderate ≥ 94-102; high ≥102 cm based on waist circumference classifications. Elevated serum uric acid was defined as serum uric acid ≥7.0 mg/dl in men. Hypertension was defined as systolic blood pressure (SBP) ≥140mmHg, and/or diastolic blood pressure (DBP) ≥90mmHg.
Laboratory measurements were performed using standard automated procedures (Hitachi 911) with commercially available kits.

RESULT

The mean age of study subjects was 38.9 years, the range is 30 to 50 years as shown in table 1. The mean level of serum uric acid was 5.9 ± 1.6.

Table 1: Characteristics of subjects

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>38.9 ± 6.5</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>171.8 ± 5.7</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>83.2 ± 14.6</td>
</tr>
<tr>
<td>Body mass index</td>
<td>28.2 ± 4.8</td>
</tr>
<tr>
<td>Serum uric acid</td>
<td>5.9 ± 1.6</td>
</tr>
</tbody>
</table>

Table 2: Subjects with elevated serum uric acid among obese

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Obesity index</th>
<th>Central obesity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Body mass index categories (BMI-C)</td>
<td>Waist circumference (W-C)</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>Overweight</td>
</tr>
<tr>
<td>N. %</td>
<td>103</td>
<td>33.7</td>
</tr>
<tr>
<td>Elevated serum uric acid</td>
<td>5</td>
<td>4.9</td>
</tr>
</tbody>
</table>

All (R): calculated with each category by dividing the proportions of biochemical abnormalities over weight or moderate or high or obese level / low-level proportion or non-obese proportion.

Table 2 shows that the serum uric acid among overweight and obese subjects was elevated 5.6, 10.8 times compared with normal weight subjects respectively. Whereas participants with moderate and high central obesity categories, their serum uric acid
was elevated 5.8, 10.9 times compared with participants with normal level of central obesity respectively.

Table 3 shows the adjusted level of serum uric acid for overweight and obese was 6.2, 19.17, 95% CI compared with normal subjects respectively, while for subjects with moderate and high central obesity were 6.63, 19.6, 95% CI compared with participants with normal level of central obesity respectively. Furthermore, dietary protein makes ≥16.5% of energy and obesity during adolescence; elevated creatinine has significant relative risk for elevated serum uric acid.

Table 3: Adjusted relative risk of elevated serum uric acid of obesity

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exponential (B)</th>
<th>95% CI for Exponential (B)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass index (BMI-C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parental hypertension</td>
<td>0.52</td>
<td>0.28</td>
<td>0.95</td>
</tr>
<tr>
<td>Dietary protein ≥16.5% of energy</td>
<td>2.89</td>
<td>1.34</td>
<td>6.25</td>
</tr>
<tr>
<td>Creatinine</td>
<td>1.56</td>
<td>1.05</td>
<td>2.31</td>
</tr>
<tr>
<td>Overweight</td>
<td>6.20</td>
<td>2.23</td>
<td>17.22</td>
</tr>
<tr>
<td>Obese</td>
<td>19.17</td>
<td>7.04</td>
<td>52.15</td>
</tr>
<tr>
<td>Waist circumference (W-c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adolescence obesity</td>
<td>2.22</td>
<td>1.10</td>
<td>4.48</td>
</tr>
<tr>
<td>Dietary protein ≥16.5% of energy</td>
<td>2.93</td>
<td>1.36</td>
<td>6.33</td>
</tr>
<tr>
<td>Creatinine</td>
<td>1.56</td>
<td>1.05</td>
<td>2.31</td>
</tr>
<tr>
<td>Moderate central obesity</td>
<td>6.63</td>
<td>2.41</td>
<td>18.22</td>
</tr>
<tr>
<td>High central obesity</td>
<td>19.60</td>
<td>7.16</td>
<td>53.68</td>
</tr>
</tbody>
</table>

CI: Confident Intervals
Exp(B), estimated odds ratio in binary logistic regression models
DISCUSSION

The positive correlation between serum uric acid level and obesity has been recognized for a long time. Several cross-sectional studies have indicated the relationship between elevated serum uric acid and obesity. In a cross-sectional study of 640 apparently healthy Dutch men and women aged 65-79 years, serum uric acid level was found to be positively associated with body weight, BMI, body fatness, and lean body mass in men but not women. The association of obesity with elevated serum uric acid is also supported by longitudinal studies.

Overweight in adolescence was a more powerful predictor of this risk than overweight in adulthood. This study emphasizes the association between elevated serum uric acid and obesity. Obese subjects had elevated serum uric acid approximately 10 times than non-obese subjects while overweight had elevated serum uric acid approximately 6 times than non-obese subjects as shown in table 2.

In addition, this study showed that central obesity had a potential risk on elevated serum uric acid more than overall obesity. Also high protein intake and creatinine were significantly associated with elevated uric acid, as have been found by Vague, et al and Cigolini et al. Furthermore, serum uric acid was also positively correlated with serum triglyceride, LDL-C and negatively with HDL as have been found by Facchini et al. The association of obesity with overweight has a number of effects on urate metabolism, which include decreasing urate clearance and increasing urate production.

CONCLUSION

This study reveals that obesity particularly central one is the dominant risk factor for elevated serum uric acid. Therefore it is important to establish preventive measures towards reducing obesity and overweight rather than treating health consequences such as elevated serum uric acid.

REFERENCES

