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Abstract. Consider the problem of selecting the best stochastic system or the best m systems among a finite but large alternative
systems. If a limited computational budget is available to be distributed among the different alternatives, then instead of distributing
these computations evenly, the optimal computing budget allocation (OCBA) can be used to distribute this budget in a smart way
so as to maximize the probability of correct selection (PCS). However, the OCBA does not tell how large is the PCS. In this paper,
we present a procedure that resembles the OCBA, but it gives an approximation of PCS. Thus the user can stop the simulation
whenever a precision level is reached.

INTRODUCTION

Consider the problem of locating the best m systems among a very large number of alternative simulated systems.
This problem appears in many aspects of real life such as scheduling systems, manufacturing systems, telecommu-
nication systems, etc. The Ordinal Optimization (OO) was proposed to relax the problem to select a good enough
solution instead of simulating each alternative accurately. The optimal computing budget allocation (OCBA) was then
proposed to enhance the OO. OCBA assumes that there are available computational budget, and the question is how
to distribute them among the competing alternative systems in order to maximize the probability of correct selection
(P(CS)) instead of distributing them evenly. However, in all the previous literature, the OCBA do not approximate the
probability of correct selection. In this paper, we discuss how to approximate P(CS) based on the OCBA distribution,
the user then can chose whether to continue the simulation until a certain level of precision is achieved or not.

Each sample of the performance value requires one simulation run, therefore for large scale problems, large
number of samples are needed which is very time consuming and maybe impossible. In this situation, one would
change the objective to find a good enough solution rather than estimating accurately the performance value of each
system.

Suppose we have an available computing budget (computing time) to be distributed among the different alter-
native systems in order to maximize the probability of correctly selecting the best m systems. To achieve this goal
[1] proposed the Optimal Computing Budget Allocation (OCBA) procedure that gives a large number of simulation
samples to the systems that have more impact on identifying the best systems, whereas it gives a limited simulation
sample for those systems that have little impact on the final solution, see [2],[3], [4], and [5].

There exists a large literature on assessing P(CS ) based on classical statistical models, [6] and [4]). However,
most of these approaches are only suitable for problems with a small number of systems. [5] introduced an estimation
technique that approximates P(CS ) for ordinal comparison when the number of systems is large based on a Bayesian
model. more details about MOCBA can be found in [7], [8], [9], [10].

The main objective of this paper is to provide an approximation of the probability of correctly selecting the best
m systems among k different systems subject to a constraint on the total available budget.
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Optimal Computing Budget Allocation for Selecting the Best m

Consider the problem of selecting a set S m that contains the best m systems among k systems. We will discuss how to
allocate the available budget among the alternative systems in order to improve the probability of correct selection.

The problem can be formulated as maximizing the probability of correctly selecting the best m systems; P(CS m)
subject to a constraint on the total number of available samples, see [11], [12] . In mathematical notation, the problem
is formulated as follows:

max
N1,...,Nk

P(CS m)

s.t.
k∑

i=1

Ni = T (1)

where T is the total number of simulation replications (budget), k is the total number of systems and Ni is the number
of simulation replications allocated to system i. Assume that Yi j is the jth simulation sample of system i for estimating
the mean Yi , where j = 1, . . . ,Ni and Yi = 1/Ni

∑Ni
j=1 Yi j is the estimated mean. If we use multiple replications method

or batch means in simulation, then by the Central Limit Theorem, Ȳi is normally distributed with mean Yi and variance
σ2

i /Ni. In practice σ2
i is unknown, so we estimate it using the sample variances s2

i for Yi j.
Suppose that we are interested in selecting a set S m that contains the m systems with the smallest means. Let Ȳir

be the r-th smallest (order statistic) of {Ȳ1, Ȳ2, . . . , Ȳn}, i.e. Ȳi1 ≤ Ȳi2 ≤ . . . ≤ Ȳin . Then, the selected subset is given by
S m = {i1, i2, . . . , im}. The correct selection is that S m contains the actual m smallest means, i.e. CS m = {maxi∈S m Yi ≤

mini<S m Yi}, where Yi is the mean of system i.
Let Ŷi be independent samples of Ȳi obtained by multiple replications method of simulation, then the probability

of correct selection can be approximated by [11]

P(CS m) = P{Ŷi ≤ Ŷ j},∀ i ∈ S m, j < S m

≥ P{Ŷi ≤ c and Ŷ j ≥ c}, i ∈ S m, j < S m

=
∏
i∈S m

P{Ŷi ≤ c}
∏
i<S m

P{Ŷi ≥ c} = APCS m

where c is a constant between Ym and Ym+1.
Let αi = (Yi − c)/σi then for i ∈ S m, αi < 0. Since Ŷi is normally distributed with mean Yi and variance σ2

i /Ni,
for large Ni, by ([13] (Chapter 5 Section 3)) we get:

P(Ŷi ≤ c) = P
(

Ŷi − Yi

σi/
√

Ni
≤

c − Yi

σi/
√

Ni

)
= 1 −

(
1 − P

(
Ŷi − Yi

σi/
√

Ni
≤ −αi

√
Ni

))
≥ 1 +

1
√

2π

1
√

Niαi
exp

−α2
i Ni

2


Similarly for i < S m, αi > 0, therefore

P(Ŷi ≥ c) = P
(

Ŷi − Yi

σi/
√

Ni
≥

c − Yi

σi/
√

Ni

)
= P

(
Ŷi − Yi
σi/
√

Ni
≤

Yi − c
σi/
√

Ni

)
= 1 −

(
1 − P

(
Ŷi − Yi
σi/
√

Ni
≤

Yi − c
σi/
√

Ni

))
≥ 1 −

1
√

2π

1
√

Niαi
exp

−α2
i Ni

2


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The probability of correct selection then becomes

APCS m =
∏
i∈S m

P{Ŷi ≤ c}
∏
j,S m

P{Ŷ j ≥ c}

≥
∏
i∈S m

1 +
1
√

2π

1
√

Niαi
exp

−α2
i Ni

2

 ∏
i<S m

1 − 1
√

2π

1
√

Niαi
exp

−α2
i Ni

2


= EAPCS m

where EAPCS denotes the estimated approximate values of the probability of correct selection.
The optimization problem (1) then becomes,

max
N1,N2,...,Nk

∏
i∈S m

1 +
1
√

2π

1
√

Niαi
exp

−α2
i Ni

2

 ∏
i<S m

1 − 1
√

2π

1
√

Niαi
exp

−α2
i Ni

2

 (2)

subject to
k∑

i=1

Ni = T, Ni ∈ N, i = 1, 2, ..., k.

Using the Lagrangian relaxation function of the optimization problem (2) and after some calculations we con-
clude the following theorem.

Theorem 1 Given a total number of simulation samples T to be allocated to k competing systems in order to select
a set of the best m systems whose performance is depicted by normal random variables with means Y1,Y2, . . . ,Yk and
finite variances σ2

1, σ
2
2, . . . , σ

2
k respectively. As T −→ ∞, the approximate probability of correct selection can be

asymptotically maximized when

Ni

σ2
i /δ

2
i

=
N j

σ2
j/δ

2
j

(3)

where Ni is the number of samples allocated to system i, δi = Yi − c, and c is a constant satisfies max j∈S m Y j ≤ c ≤
min j<S m Y j.

If we fix an index s say, then we know that

α2
s Ns = α2

j N j, j , s (4)

where α j = δ j/σ j. therefore,

N j =
α2

s

α2
j

Ns

Since
∑

j∈Θ N j = T , we get ∑
j∈Θ

α2
s

α2
j

Ns = T

For j , s, let D j = α2
s/α

2
j then Ds =

∑
j,s

α2
s

α2
j

and

Ns = T/Ds (5)
N j = D jNs, j ∈ Θ, j , s (6)

If s ∈ S m, then αs < 0, α j < 0 for j ∈ S m and α j > 0 for j < S m. Using (4) we get t
√

N jα j =
√

Nsαs, j ∈ S m and√
N jα j = −

√
Nsαs, j < S m. Therefore, using (2), the optimal value of the probability of correct election P(CS ), can

be approximated by

AP(CS ∗) =
∏

i∈S m

[
1 + 1

√
2π

1
√

Niαi
exp

(
−α2

i Ni

2

)]∏
i<S m

[
1 − 1

√
2π

1
√

Niαi
exp

(
−α2

i Ni

2

)]
=

[
1 + 1

√
2π

1
√

Nsαs
exp

(
−α2

s Ns

2

)]k
(7)
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Similarly, if s < S m, then αs > 0, and

AP(CS ∗) =

[
1 −

1
√

2π

1
√

Nsαs
exp

(
−α2

s Ns

2

)]k

(8)

Since the means and variances are unknown, then one can use their estimates so far to estimate the value of c and
the approximated value of P(CS ∗).

The OCBAm Procedure for Selecting m Good Enough Systems
The idea of OCBAm algorithm is to distribute the available budget on the alternative systems based on their impact on
the final solution. So it starts by giving each alternative an initial sample t0 in order to get estimates of their objective
values. Then a small increment ∆ will be added to the budget and distribute them based on equation (5). we continue
this way until the budget is consumed. Note that the selection of initial sample size and the increment is important,
because if t0 is large, then it means we spend more computation on non necessary alternatives. If t0 and ∆ are too
small, then the estimated objective values and variances are not accurate which leads to incorrect distribution of the
budget.

Numerical Example

Consider 100 normally distributed alternatives with means given by 0.1, 0.2, . . . , 10.0, and assume that the variance is
1.0 for all systems. Suppose that we are interested in selecting a subset of 10 best alternatives. Assume that c = 1.05,
then the approximation of the probability of correct selection P(CS ) is given by Figure 1.

FIGURE 1. The approximate probability of correct selection as a function of the total budget T

It is clear that only 1,000 samples are needed to get the P(CS) very close to unity. Now, the procedure described
above is used to estimate P(CS) of selecting the best 10 alternatives among the 100 alternatives given in the above
example. The initial sample size is given by t0 = 10 and the increment is given by ∆ = 20 per stage until the total
budget exceeds N = 20, 000 samples. Figure 2 gives the average P(CS) over 10 replications.

It is clear that the estimate of P(CS) larger than the approximate values of the P(CS ).

Conclusion

In this paper, we have considered the problem of selecting the best m systems among a finite but large alternative
systems. The alternative systems usually represent the expected performance of some complex stochastic system.
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FIGURE 2. The estimated probability of correct selection as a function of T

Therefore no exact formula of the objective function is available, and the objective values have to be estimated using
simulation. If the number of alternative systems is large, then simulating each system accurately may be difficult
and in some cases is infeasible. Assume that there are limited computational budget to be distributed among the
competent systems, then instead of distribute them evenly, we discussed how to distribute the available computational
budget to the alternative systems in order to maximize the probability of correct selection, so the alternatives that have
more impact on the final solution will be given more simulation samples. We also discussed how to approximate the
probability of correct selection. We have tested the procedure on a generic example. The simulation shows a better
performance than the approximated probability of correct selection.
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