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Abstract. This paper presents an integrated framework for learning to predict
geometry related features with respect to 3D surfaces. The idea is to use a train-
ing set of known prediction values to create a model founded on local 3D geome-
tries associated with a given surfaces so that predictions with respect to a new
“unseen” surfaces can be made. The local geometries are represented using point
series curves. Two variations are proposed: (i) discretised and (ii) real number. To
act as a focus for the work a sheet metal forming application is considered where
we wish to predict the errors that are introduced as a result of applying a forming
process. Given a desired surface T , the surface T ′ actually produced as a result
of the sheet metal forming process is affected by a phenomena called Springback
(the feature we wish to predict). The proposed process has been evaluated using
two flat-topped pyramid shapes and by considering a variety of parameter set-
tings. Excellent results have been obtained in terms of accuracy and Area Under
ROC Curve (AUC).
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1 Introduction

Pattern mining has long been studied within the field of knowledge discovery in data
and machine learning. Pattern mining in the context of tabular data is well understood
(see for example work on frequent item set mining). With respect to many other forms
of more complex data, pattern mining remains a subject of research. The fundamen-
tal challenge is to represent such complex data in a way that facilitates meaningful
pattern identification. The focus for the work described in this paper is three dimen-
sional (3D) surfaces. More specifically we wish to identify patterns in such surfaces
that are indicative of some set of feature values we wish to predict. The intention is
that, once identified, these patterns can be used for prediction purposes with respect to
new “unseen” 3D surfaces. The idea is to represent specific local geometries located
within 3D surfaces so that we can attempt to associate specific feature values with these
geometries. To this end a prediction framework is proposed whereby local geometries
are represented in terms of linearisations to form a collection of point series (curves).
Two variations of the linearisation are considered, a discretised linearisation and a real
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valued linearisation, and a number of different local geometry “sizes”. Using an appro-
priately defined training set prediction values, associated with some feature of interest,
can be related to each linearisation. Given a new “unseen” 3D surface this can be de-
composed into a collection of linearisations similar to those used with respect to the
training set. By matching the new linearisations associated with the new surface to the
previously generated linearisations, which have known feature values associated with
them, these values can be used as predictor values with respect to the new shape.

The exemplar application, and that used to illustrate the work described in this pa-
per, is sheet metal forming. In sheet metal forming the forming process takes as input
a specification of a 3D surface to be manufactured, a shape T , to which a forming
processes is applied to produce a shape T ′. However, as a result of application of the
process various deformations are introduced, called springback. As a consequence the
manufactured shape T ′ is not equivalent to the specified shape T . Springback is caused
by a number of factors of which the most significant is the geometry of the intended
shape [2]. Further, springback is not distributed evenly over a given shape, in practice
springback is more significant with respect to some geometries than others. Springback
is therefore correlated to the nature of local geometries within the specified shape. If
we can predict springback we can apply a correction to the specification T so as to
minimise the springback effect.

Thus the contributions of this paper are as follows:

1. A method for representing local 3D geometries using point series.
2. A mechanism for feature value prediction with respect to local geometries present

within 3D surfaces.
3. An interesting case study illustrating the significance of the proposed process.

The rest of the paper is organised as follows. In section 2 a brief overview of related
work is presented. Section 3 introduces the prediction framework including the gener-
ation of the proposed point series representations. The evaluation of the proposed pre-
diction framework, using manufactured surfaces describing flat topped pyramid shapes,
is presented in Section 4 using a variety of parameters. Some conclusions are then pre-
sented in Section 5.

2 Overview of Related Work

The work described in this paper, although generally applicable, is directed at sheet
metal forming as widely used in the aircraft and automotive parts manufacturing indus-
tries. A specific issue in sheet metal forming is the springback phenomenon, the elastic
deformation that occurs as a result of the application of the manufacturing process.
Generally speaking the nature of any resulting springback is influenced by: (i) the man-
ufacturing parameters used and (ii) the material properties [6,15,13]. Substantial works
have been conducted to characterise, analyse and predict the springback. To this end
the Finite Element Method (FEM) has been extensively used for springback prediction
purposes [4,14,19]. The FEM provides a simulation environment that is flexible (param-
eters can be easily modified) but at the same time complex. However, the application
of FEM is a time consuming task [7,17,6]. Furthermore, FEM has been found to be an
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inaccurate prediction method due to the use of simplification assumptions with respect
to the required integration calculation [3,4,15]. An alternative approach, and that advo-
cated in this paper is to use some form of machine learning to build a predictor. More
specifically to generate a generic classifier that takes as input definitions of local ge-
ometries contained on the part to be manufactured and predicts springback. To the best
knowledge of the authors there is no reported work on the application of classification
techniques for the purpose of predicting springback in sheet metal forming.

3 The Prediction Framework

The input to the proposed prediction framework is a grid describing some 3D shape
of interest. Each grid square is defined by its centre point, the grid point, which is in
turn defined by an x-y coordinate pair. Each grid point also has a z (height) value and,
when used as a training set, a value associated with some feature of interest. In the case
of the sheet metal forming application this will be a springback value. Thus the grid
represents a mesh describing some 3D surface of interest. Using this input we wish to
build a model of the 3D surface which can be used to predict values associated with
new “unseen” 3D surfaces. Note that the number of grid squares required to represent
a given shape will depend on the grid size d. Fewer grid squares will be generated if a
larger d value is used.

Given a grid representation G, a collection of local geometries can be defined (one
per grid square). Two alternative proposed point series representations are described in
Sub-section 3.1 below. Once a collection of point series curves have been generated,
each with a feature value of interest associated with it (a prediction value), this model
can be used for prediction purposes. There are a number of mechanism where by this
may be achieved; however, in the context if this paper a K-Nearest Neigbour (KNN)
approach is advocated that uses the warping distance between local geometry curves to
make predictions. This matching process is described further in Sub-section 3.2.

3.1 Point Series Representation

There are various ways that 3D local geometries can be defined. Earlier work by the
authors considered a Local Binary Pattern (LBP) based representation referred to as
the Local Geometry Matrix (LGM) representation [5,11,12]. In the context of sheet
metal forming the authors have also considered a “distance from edge” measure (un-
published), referred to as the Local Distance Measure (LDM) representation. In this
paper a point series representation is considered. The basic idea is to describe each lo-
cal 3D geometry surrounding a grid point pi using a linearisation of space. There are
four issues to be considered in this respect:

1. What is the nature of the neighbourhood to be considered.
2. How best to conduct the desired linearisation.
3. How many points should we include in our point series.
4. What is the nature of the value represented by each point.
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In terms of the nature of the neighbourhood this is partly related to the adopted grid
size d, adoption of a large value for d will dictate larger grid squares and consequently
larger neighbourhoods. The size of a neighbourhood can be simply described in terms
of a Region Of Interest (ROI) surrounding each point pi defined in terms of a n× n
block of grid squares centred on pi (note that to ensure that the ROI is symmetric about
pi the value for n should be an odd number). What the value for n should be is a matter
for consideration and may also, at least to an extent, be application dependent. For the
linearisation there are a number of “space filling curve” formats that could have been
adopted (for example a Peano curve [16] or a Hilbert curve [8]). However, given the
nature of our ROIs (see below) a straightforward spiral linearisation was adopted as this
fits well with the proposed n× n ROI definition. With respect to the number of points
to be considered we can include all points covered by a linearisation or a selection
of “key” points. If we include all points there will be n2 − 1 points per linearisation.
Given a grid comprised of many grid squares this will result in a large number of point
series (one per grid square) which in turn might mean that the size (length) of each
point series becomes significant (from a time complexity perspective). An alternative
is to consider only “corner points” and “mid-way points” in which case we will have
((n− 1)/2)× 8 points per linearisation instead of n2 − 1. Finally, with respect to the
value to be represented by each linearisation point the idea is to use the difference
in the z coordinates between each neighbourhood point and the point pi as this will
clearly capture variations in local geometries. The issue is weather to use real δ z values
or discretised values. In the case of the LGM and LDM representations considered
previously by the authors (see above) discretised values were used. This was because the
classification processes adopted with respect to these representations required discrete
values. However, real values may produce a better result. Thus two variations off the
proposed linearisation were considered: (i) discretised linearisation and (ii) real number
linearisation. Figure 1(a) shows an example linearisation using a 5× 5 neighbourhood
and key points instead of all points. Figure 1(b) shows the spiral linearisation and Figure
1(c) the resulting point series.

Using the above process we can create a model of a particular 3D surface application
domain which can be used for prediction purposes. So that the model is as comprehen-
sive as possible the training data should cover a wide diversity of local geometries,
ideally all the potential local geometries that can occur with respect to a particular ap-
plication domain.

Fig. 1. Example spiral linearisation for a 5×5 neighbourhood
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3.2 Prediction

As noted above a KNN classification systems is suggested to carry out the desired
prediction. Given a new curve to be classified, the k most similar pre-labeled curves
were identified and the most similar selected according to the warping distance between
two curves. The warping distance was obtained using the established Dynamic Time
Warping (DTW) process [10,18]. DTW operates as follows. Given two point series
A = {a1,a2, · · · ,an} and B = {b1,b2, · · · ,bm}, we create a matrix R that has dimension
|A|× |B| = n×m is defined. The value at each matrix element 〈i, j〉 (where 0 ≤ i < n
and 0 ≤ j < m) is the the Euclidean distance between points ai and b j when the two
curves are considered in term of a 2D reference plane. Once the matrix elements have
been computed the warping path W is identified (W ⊂ elements in R). This is the path
from the bottom left corner of the matrix to the top right corner that links the matrix
elements with lowest values. The most direct path will be along the leading diagonal,
this will occur when curves A and B are identical. The length of the warping path, Wdist ,
is the accumulated sum of the matrix element values contained in W :

Wdist =
k=|W |
∑
k=1

Wk (1)

Given two identical curves Wdist will be 0.

4 Evaluation

The evaluation of the proposed prediction framework is considered in this section.
To this end real data was obtained using an Asymmetric Incremental Sheet Forming
(AISF) process, a sheet metal forming process used in industry [9]. Two sample sur-
faces (shapes) were considered referred to as the Gonzalo and Modified surfaces, both
described flat topped pyramid shapes. Each was manufactured four time, twice using
steel and twice using titanium. Thus eight different data sets (comprised of both before
and after clouds) were available for experimentation: (i) Gonzalo Steel 1 (GS1), (ii)
Gonzalo Steel 2 (GS2), (iii) Modified Steel 1 (MS1), (iv) Modified Steel 2 (MS2), (v)
Gonzalo Titanium 1 (GT1), (vi) Gonzalo Titanium 2 (GT2), (vii) Modified Titanium
1 (MT1), (viii) Modified Titanium 2 (MT2). Each data set comprised two coordinate
clouds, a before cloud Cin and an after cloud Cout . The pre-processing of this data is
described in Sub-section 4.1 below.

The evaluation was directed at investigating the following:

1. The effect of variations in the value of d (the grid size).
2. The effect of using different sized neighbourhoods.
3. A comparison with respect to using all linearisation points versus only key points.
4. The generalisation of the proposed approach (can we build a generally applicable

classifier using our proposed linearisation).

Each of these is considered in further detail in Sub-sections 4.2 to 4.5 below. The eval-
uation was conducted in sequence by considering pairs of data sets, the best parameter
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settings identified with respect to one investigation were adopted for use in following
investigations. The metrics used for evaluation purposes were accuracy and AUC. A
tolerance of 0.08, as suggested by BS ISO 2005 [1], was used.

4.1 Training Data Generation

As noted above the training data was derived using before and after point clouds (Cin

and Cout) produced using AISF sheet metal forming. The Cin cloud was obtained from
a CAD system and was used to describe the desired shape T . The Cout cloud, used to
describe the produced shape T ′, was obtained using a GOM (Gesellschaft fur Optische
Messtechnik) optical measuring tool. During pre-processing both clouds were trans-
lated into the desired a grid representation (using the same d value) to give two grids,
Gin and Gout respectively. The z value associated with each pi was obtained by averag-
ing the z coordinates for all the points located within that grid square. The springback
(error) associated with each pi was obtained by comparing the corresponding points
in Gin and Gout . The springback value in each case was obtained by calculating the
distance along the normal from each point pi in Cin to where it cut the Cout surface.

4.2 Grid Size

To determine the effete of the grid size, a range of grid sizes, d = {2.5,5,10,15,20}
mm, were considered together with a 3× 3 neighbourhood using the key point lineari-
sation. The results are shown in the Tables 1 (best result for each dataset indicated in
bold font). From the table it can be seen that excellent accuracy and AUC values were
recorded regardless of the shape and manufacturing material used. From the tables it
can also be observed that, in general, as the grid size increases the accuracy and AUC
values start to decrease, it is conjectured that this is because of the increasing coarseness
of the representation. This is more evident with respect to the AUC values because of
the unbalanced nature of the input data.

Table 1. The results for 3× 3 neighbourhood using key point representation technique (Total
number of key points = 8 points)

d=2.5 d=5 d=10 d=15 d=20
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

GSV1 0.97 0.96 0.98 0.97 0.98 0.96 0.97 0.95 0.90 0.82
GSV2 0.99 0.94 0.98 0.89 0.97 0.84 0.96 0.64 0.96 0.78
GTV1 0.99 0.97 1.00 1.00 0.99 0.98 0.94 0.76 0.93 0.72
GTV2 0.99 0.96 0.99 0.99 0.99 0.97 0.98 0.93 0.96 0.96
MSV1 0.97 0.92 0.97 0.92 0.98 0.97 0.97 0.94 0.97 0.87
MSV2 0.96 0.94 0.98 0.97 0.98 0.93 0.97 0.92 0.92 0.71
MTV1 0.98 0.96 0.98 0.97 0.98 0.94 0.97 0.96 0.90 0.81
MTV2 0.97 0.96 0.96 0.94 0.93 0.90 0.98 0.94 0.82 0.73
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4.3 Neighbourhood Size

To determine the effect of different n× n neighbourhood sizes three values of n were
considered, {3,5,7}. Tables 2 and 3 show the results obtained using 5× 5 and 7× 7
neighbourhood sizes. Comparing these results with those presented above in Table 1
(3× 3) it can be seen there there is no discernible difference between the different
neighbourhood sizes although it can be noted that grid size ceases to have an impact as
neighbourhood sizes increase.

Table 2. The results for 5× 5 neighbourhood using key point representation technique (total
number of key points = 16 points)

d=2.5 d=5 d=10 d=15 d=20
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

GSV1 0.97 0.96 0.97 0.95 0.98 0.97 1.00 1.00 0.84 0.80
GSV2 0.99 0.94 0.97 0.89 0.96 0.75 0.94 0.64 0.92 0.73
GTV1 0.99 0.96 0.99 0.99 0.94 0.89 0.94 0.70 0.91 0.74
GTV2 0.99 0.96 0.99 0.98 0.96 0.85 0.95 0.90 0.99 0.99
MSV1 0.96 0.91 0.96 0.92 0.96 0.92 0.98 0.97 0.91 0.62
MSV2 0.96 0.94 0.96 0.94 0.97 0.91 0.97 0.93 0.92 0.64
MTV1 0.98 0.96 0.98 0.96 0.96 0.89 0.97 0.95 0.84 0.70
MTV2 0.97 0.96 0.96 0.94 0.93 0.92 0.96 0.93 0.99 0.98

Table 3. The results for 7× 7 neighbourhood using key point representation technique (total
number of key points = 24 points)

d=2.5 d=5 d=10 d=15 d=20
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

GSV1 0.98 0.97 0.99 0.98 0.94 0.92 0.87 0.70 0.78 0.33
GSV2 0.99 0.96 0.98 0.93 0.94 0.85 0.89 0.65 0.67 0.50
GTV1 0.98 0.93 0.99 0.99 0.87 0.77 0.79 0.57 0.81 0.89
GTV2 0.99 0.95 0.98 0.96 0.88 0.72 0.83 0.75 0.48 0.19
MSV1 0.96 0.92 0.97 0.95 0.99 0.99 0.89 0.81 0.75 0.67
MSV2 0.97 0.95 0.97 0.97 0.96 0.95 0.92 0.86 0.67 0.50
MTV1 0.98 0.95 0.98 0.97 0.92 0.72 0.97 1.00 0.70 0.47
MTV2 0.97 0.94 0.96 0.93 0.97 0.95 0.92 0.74 0.56 0.25

4.4 All Points versus Key Points

This sub-section compares the operation of the all points linearisation with the key
points linearisation using different grid size d = {2.5,5,10,15,20}. Table 4 presents
the results obtained using a 5 × 5 neighbourhood coupled with the all point lineari-
sation which can be compared with the results presented in Table 2 which shows the
results of using a 5×5 neighbourhood and the key point linearisation. From the table it
can be observed that there is no performance difference between the two linearisations.
Similar results were produced using a 7× 7 neighbourhood, Note that in the case of a
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Table 4. The results for 5×5 neighbourhood using all point representation technique (total num-
ber of key points = 24 points)

d=2.5 d=5 d=10 d=15 d=20
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

GSV1 0.96 0.95 0.97 0.95 0.98 0.97 1.00 1.00 0.84 0.80
GSV2 0.99 0.94 0.98 0.90 0.96 0.75 0.94 0.64 0.92 0.73
GTV1 0.99 0.96 0.99 0.99 0.94 0.88 0.94 0.70 0.91 0.74
GTV2 0.99 0.96 0.99 0.98 0.96 0.85 0.95 0.90 0.98 0.99
MSV1 0.97 0.91 0.96 0.93 0.96 0.92 0.98 0.97 0.93 0.64
MSV2 0.96 0.94 0.96 0.94 0.96 0.92 0.98 0.96 0.90 0.64
MTV1 0.99 0.97 0.98 0.95 0.96 0.91 0.97 0.96 0.83 0.67
MTV2 0.98 0.97 0.96 0.94 0.93 0.92 0.98 0.96 0.99 0.98

Fig. 2. The run time (s) for all vs key point rep-
resentation, 5×5 neighbourhood, d = 2.5 mm

Fig. 3. The run time (s) for all vs key point rep-
resentation, 7×7 neighbourhood, d = 2.5 mm

Fig. 4. The run time (is) for all vs key point rep-
resentation, 5×5 neighbourhood, d = 5 mm

Fig. 5. The run time (s) for all vs key point rep-
resentation, 7×7 neighbourhood, d = 5 mm

3× 3 neighbourhood there is no difference between the key point and the all point lin-
earisation.Figures 2 to 11 indicate the recorded run times using both representations and
different grid size. The charts indicate that the key point linearisation is more efficient
than the all point representation especially with respect to large grid sizes.
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Fig. 6. The run time (s) for all vs key point rep-
resentation, 5×5 neighbourhood, d = 10 mm

Fig. 7. The run time (s) for all vs key point rep-
resentation, 7×7 neighbourhood, d = 10 mm

Fig. 8. The run time (s) for all vs key point rep-
resentation, 5×5 neighbourhood, d = 15 mm

Fig. 9. The run time (s) for all vs key point rep-
resentation, 7×7 neighbourhood, d = 15 mm

Fig. 10. The run time (s) for all vs key point rep-
resentation, 5×5 neighbourhood, d = 20 mm

Fig. 11. The run time (s) for all vs key point rep-
resentation, 7×7 neighbourhood, d = 20 mm

4.5 Generalisation

This section presents the results obtained from training a classifier on one shape and
testing it on another. The main goal was determine whether it was possible to gener-
ate a generally applicable classifier if it was provided with a suitable shape to train on.
From earlier experiments it was noted that that lower grid sizes produced better results,
hence for this set of experiments d = 5 was used. The operation of the proposed point
series representation was also compared with the LGM and LDM representations pro-
posed previously by the authors [5]. Table 5 presents the results obtained in terms of
AUC values (best results on bold). From the table it can be seen that using the proposed
representation a best AUC value of 1.00 could be obtained. In terms of the the previous
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Table 5. AUC results for the generic classifier

Train
GSV1 GSV2 GTV1 GTV2 MSV1 MSV2 MTV1 MTV2

Test

GSV1

Point series 0.97 0.94 0.93 0.96 0.91 0.96 0.98
LGM 0.66 0.59 0.70 0.44 0.52 0.48 0.52
LDM 0.52 0.50 0.50 0.51 0.50 0.52 0.47

LGM + LDM 0.94 0.76 0.81 0.80 0.89 0.75 0.70

GSV2

Point series 0.99 0.99 0.92 1.00 0.96 1.00 0.99
LGM 0.62 0.68 0.74 0.60 0.53 0.67 0.61
LDM 0.50 0.50 0.50 0.50 0.50 0.50 0.50

LGM + LDM 0.72 0.78 0.83 0.81 0.90 0.78 0.74

GTV1

Point series 0.84 0.87 0.95 0.64 0.66 0.94 0.94
LGM 0.65 0.74 0.75 0.69 0.67 0.69 0.67
LDM 0.49 0.61 0.53 0.41 0.41 0.41 0.40

LGM + LDM 0.70 0.89 0.80 0.80 0.89 0.73 0.72

GTV2

Point series 0.81 0.91 0.98 0.65 0.61 0.99 0.95
LGM 0.66 0.81 0.72 0.70 0.63 0.68 0.65
LDM 0.50 0.50 0.50 0.50 0.50 0.50 0.50

LGM + LDM 0.74 0.97 0.79 0.83 0.93 0.79 0.74

MSV1

Point series 0.98 0.99 0.99 0.98 0.95 0.98 0.97
LGM 0.61 0.57 0.70 0.76 0.82 0.76 0.77
LDM 0.51 0.39 0.47 0.47 0.59 0.59 0.60

LGM + LDM 0.66 0.89 0.74 0.76 0.92 0.74 0.75

MSV2

Point series 0.95 0.96 0.99 1.00 0.98 0.97 0.97
LGM 0.65 0.75 0.72 0.77 0.80 0.70 0.73
LDM 0.51 0.39 0.59 0.47 0.59 0.59 0.60

LGM + LDM 0.77 0.95 0.78 0.83 0.84 0.77 0.73

MTV1

Point series 0.85 0.88 0.96 0.94 0.62 0.59 0.95
LGM 0.62 0.74 0.72 0.71 0.75 0.73 0.76
LDM 0.50 0.50 0.50 0.50 0.50 0.50 0.50

LGM + LDM 0.74 0.93 0.76 0.81 0.80 0.91 0.71

MTV2

Point series 0.90 1.00 0.98 0.93 0.65 0.63 0.99
LGM 0.56 0.49 0.59 0.59 0.76 0.75 0.73
LDM 0.50 0.39 0.47 0.47 0.59 0.59 0.59

LGM + LDM 0.69 0.83 0.72 0.76 0.81 0.86 0.72
Average (Point series) 0.90 0.94 0.98 0.95 0.79 0.76 0.98 0.96

Average (LGM) 0.56 0.64 0.69 0.69 0.74 0.73 0.72 0.64
Average (LDM) 0.50 0.50 0.47 0.50 0.52 0.53 0.50 0.51

Average (LGM + LDM) 0.81 0.79 0.79 0.83 0.78 0.81 0.81 0.77

representations proposed by the authors (LGM, LDM and LGM and LDM combined
(LGM+LDM)) it can be seen that, in most cases, these alternatives performed badly
in comparison with the point series representation. Consequently it is argued that an
effective generic classifier can be produced using the proposed representation.
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5 Conclusion

This paper has presented a new representation and supporting mechanism to predict
feature values associated with 3D surfaces using a point series based approach. The
proposed point series representation is founded on a linearisation of the space describ-
ing a neighbourhood surrounding a given point where the neighbourhood in turn is
defined in terms of a grid. The motivation for the work was springback prediction in
sheet metal forming. Two 3D surfaces (shapes) were used to evaluate the mechanism.
Various forms of linearisation were considered using all the points in a linearisation or
only key (corner and midway) points as well as the effect of using different grid sizes
(d = {2.5,5,10,15,20}). The experiments indicated that: (i) smaller grid sizes tended
to work better, (ii) the performance using 3× 3, 5× 5 and 7× 7 neighbourhood was
almost the same and (iii) that there was no significant difference in accuracy or AUC
between the representations (all and key) however the key point representation offers
runtime advantages. Further experiments were conducted to determine whether the lin-
earisation could be used to produce a generic classifier, the results indicated that this
was indeed the case. Excellent results were returned, 100% in terms of AUC, indicating
that the point series representation is able to capture general geometric information that
can successfully be employed for prediction purposes. Overall, this is a very encour-
aging result. For future work the intention is to conduct further experimentation with
a greater variety of surfaces (shapes). The ultimate goal is to build an intelligent pro-
cess model that can predict springback errors, and suggest corrections, in the context of
sheet metal forming.
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