
A Probability Algorithm for Requirement Selection

In Component-Based Software Development

ABSTRACT

Nowadays highly competition business environment, customer

increased expectations, and highly advances in computer

technologies and software leads many organizations to adopt

Component Based Software Development (CBSD) approach in

developing their systems. As CBSD apply the idea of Components

On The Shelf (COTS) that looks for creating, using, and reusing

previously used component, CBSD expected to result on faster

software development which entails shortest time to market and

products of higher quality.

In CBSD, there still complexity regarding selecting the

appropriate requirements for the components, and further deciding

which component to be delivered first to the customer. From the

fact that many approaches are presented in the literature to solve

this problem but still there is some angles should be covered, in

this paper we presented an algorithm to facilitate the process the

prioritizing functional requirements in the incremental software

development model depending on the dependency relationship

between requirements.

Keywords

Component based development, functional requirements,

dependency, algorithm, incremental CBSD

1. INTRODUCTION
Recently, a demand for large-scale, complex and cost-effective

systems increased, these requirements face several challenges

concerning productivity cost and time, and sometimes

unmanageable software quality.

Many researches contribute in finding new, efficient, easily

managed, and cost effective paradigm for software development.

CBSD is an approach to software development that relies on the

reuse of existing software components to reduce the development

costs and production cycle, while increasing the final product’s

quality.

A software component is defined as a unit of composition with

contractually specified interfaces and explicit context

dependencies [1]. Software components must be identified and

evaluated in order to determine if they provide required

functionality for systems being developed [2]. Domain

Engineering (DE) is a process in which the reusable component is

developed and organized and in which the architecture meeting

the requirements of this domain is designed [3].

Component-based software engineering (CBSE) is a process that

emphasizes the design and construction of computer-based

systems using reusable software “components.” based on the idea

to develop software systems by selecting appropriate off-the-shelf

components and then to assemble them with a well-defined

software architecture [5].

Despite the difficulties in producing generic, scalable, adaptable,

and reusable components, CBSD opened the door for companies

to achieve high competitively by fast delivering of software in and

incremental-based way. Where software components are design

and reused in many other software and incremental way of

delivering the system to the customer will make this process

effective while reducing the time-to-market and increasing the

productivity by developing the software product by using already

coded and tested modules.

Building components and deciding on increments delivering

priorities are two major challenges facing the CBSD approach,

since many considerations should be taken into account such as a

software component is defined as a unit of composition with

contractually specified interfaces and explicit context

dependencies [1]. Every day we make many decisions like

whether to take this bus or the next one, even with we have

just a couple of choices, decisions can be difficult to make.

But what will happen when having tens, hundreds or even

thousands of functions to use or alternatives, decision-making

becomes much more difficult. One of the keys to making the

right decision is to prioritize between different alternatives. It

is often not obvious which choice is better, because several

aspects must be taken into consideration We need to develop

the functionality that is most desired by the customers, as well

as least risky, least costly, and so forth. Prioritization helps to

cope with these complex decision problems.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

permissions@acm.org.

IPAC '15, November 23-25, 2015, Batna, Algeria

© 2015 ACM. ISBN 978-1-4503-3458-7/15/11…$15.00

DOI: http://dx.doi.org/10.1145/2816839.2816903

Khaled Almakadmeh
Assistant Professor

 Department of Software Engineering
Hashemite University

 P.O. Box 330136 Zarqa (13115)
Jordan

 khaled.almakadmeh@hu.edu.jo

Ruba Alzyoudi
Master Student

Department of Software Engineering
Hashemite University

P.O. Box 330136 Zarqa (13115)
Jordan

 ruba.alzyoudi@hu.edu.jo

Hutaf Natoureah
Lecturer

Department of Computer Science
Hashemite University

P.O. Box 330136 Zarqa (13115)
Jordan

 hutaf@hu.edu.jo

mailto:Ruba.alzyoudi@hu.edu.jo
mailto:khaled.almakadmeh@hu.edu.jo

In this research, we discuss three factors which may affect the

selection process but we focus on the dependency factor because

The dependencies between individual requirements have the most

important influence on selecting the functional requirements

which effected on many software engineering activities e.g.,

project planning, architecture design, and change impact analysis.

Further, we suggest an algorithm to enhance the prioritizing

functional requirements selection process while using and

incremental component CBSD approach depending on the

dependency relationship between requirements. In order to test

the presented algorithm, an example of software requirements

system is used.

The rest of the paper is organized as follows: Section 2 presents a

review of the literature; Section 3 presents the research

methodology. Finally, section 4 presents conclusion of findings

and discussion.

2. Review of the literature
Huge research done by software engineering researches on issues

related to software development methodologies and several of

them concerned with incremental CBSD.

Off-The-Shelf Option (OTSO) is an approach presented by

Kontio. This approach depends on six major phases: "searching"

for components that mostly satisfies system requirements and

constraints, then "screening" to pass the best components to the

evaluation phase. In the "evaluation" phase, the component is

judged against the functional requirements, correctness, and

software architecture and business concerns: analysis,

deployment, and assessment phases are then followed.

Kontio[4] described the characteristics of some selected state of

art CBSD models that are practiced in software industries: they

proposed a complete model for Component Based Software

Development for reuse. The main phases are feasibility study;

system requirement and analysis; system design, component

identification and adaption, component integration engineering,

system testing and system release and deployment [6].

Morisio & Tsoukis[7] proposed to address the quality requirement

during the evaluation process to formalize the component

selection process. They proposed IusWare (IUStitia softWARis)

approach which is based on Multi-criteria Decision Aid (MCDA).

The state of art and transfer of component technology from

engineering concept to software concept is presented they have

followed CBD-Arch-DE process which is considered as a better

approach among the both CBSD and Domain Engineering [3].

In [2], researchers considered how the Common Criteria (CC), an

internationally recognized standard for security requirements

definition and security assessment of IT systems can be applied

towards the development of component-based systems. The

process includes six steps: system high level design, component

requirements definition, component search, component

evaluation, component selection, and component integration and

operation.

A discussion about the selection techniques for components is

presented by [8]: they described the component selection

techniques that help to select the components which can satisfy

the requirements. The cluster based component selection process,

for example, consists of 3 stages: dependency analysis between

Concrete Level Goals (CLG), goal-oriented specification, and

cluster analysis, goal oriented.

After defining the meaning of the term “priority”, the purpose and

benefits of requirements prioritization are listed by Donald

Firesmith [12]. This is followed by a concise discussion of the

challenges and risks that a requirements team must face when

prioritizing requirements. Then, various techniques for

prioritizing requirements are identified, and finally a set of

recommendations (including a recommended prioritization

process) are made.

Patrik and Anneliese [16] provided an overview of techniques for

prioritization of requirements for software products. Methods are

given about how to combine individual prioritizations based on

overall objectives and constraints and how to approach a

prioritization situation.

Koziolek [14] suggest an approach to generate feedback from

quantitative architecture evaluation to requirements engineering,

in particular to requirements prioritization. Koziolek proposed to

use automated design space exploration techniques to generate

information about available trade-offs.and described application

scenarios.

The dependency model proposed by Pohl [18] was based on a

survey of over thirty publications in the area of requirements

engineering. The other is a requirement (inter-)dependency model

proposed by Dahlstedt and Persson [19]. The dependency types

evaluated in this study come from these two well-known

dependency models this study provides a concise overview of the

seven inter-dependency types suggested in the D-model.

A family of test case prioritization techniques is presented by

Parthiban et. al. [15] using the dependency information from a

test suite to test suite that priority. Zhang Zhang [13] suggested an

approach for specifying functional requirements dependency.

Zhang generalized a classification of functional requirements

dependency and proposed a process meta-model to specify the

semantic information of functional requirements dependency and

deploy it on a wiki platform named Semantic REWiki. In this

paper, we use a set of functional requirements which are taken

from an online shopping system applied by Zhang Zhang [13].

3. Research Methodology

3.1 Research Method

In order to generate a component selection measurement, we start

by analyzing the factors that may affect or affected by our

components functionalities selection. Since deploying the high

priority increment first will affect the overall throughput of the

software. these factors are :Stakeholders factor, Risk factor, and

finally compatibility and dependability factors Figure 1 below

describes the relationship between these parties.

In this paper, we focus on the dependency factor since

dependencies between individual requirements have the most

important influence on selecting the functional requirements so

we aimed to present an algorithm to facilitate the process the

prioritizing functional requirements in the incremental software

development model depending on the dependency relationship

between requirements.

Figure1. Increment functions selection procedure

3.2 Stakeholder's factor
Stakeholders are the most important asset in determining the core

functions of the system and thus they are the assistant in

increments selection process.

Stakeholders includes several parties, major stakeholders in

process of CBSD are: Component developers, application

assemblers who are responsible for locating suitable components

and assemble them in integrated application systems that satisfy

customer requirements and Customers [9].

Several methods used in order to prioritize requirements

according to stakeholders' opinion. The ten most important; this

was done with a simple 1 to 10 ranking method, in which one (1)

being “not important” and ten (10) “very important”. Based on the

elicitation meetings and the perceived ideas of what was important

to the different stakeholders; a number was set for each

requirement. Other requirements could be prioritized according to

the “Five-Way Priority Scheme” or other methods for

prioritization, such as the "hundred-dollar test" and the "Yes/No"

vote. Selection of the most appropriate method will depend on a

weighing scheme for the disadvantages and advantages of these

methods against each other.

3.3 Risk factor
While CBSD helps overcome inadequacies in traditional

development, it also poses risks to the profitability and even long-

term survival of each of its stakeholders. From uncertainties in

leveraging existing legacy code to the inability to find needed

components, they confront challenges in constructing component

solutions that address their evolving enterprise requirements.

Therefore, before embarking on component-based development

projects, each stakeholder must assess its risks and devise sound

strategies to address them [9].

3.4 Compatibility and Dependency
Compatibility factor describes the how the components can

operate satisfactory together on the same system. consistency

between the numbers and types of method arguments and on

appropriate use of a method return type by determining those

interfaces which can satisfy all possible sequences of requested

operations.

Compatibility assessment can help determine whether a pre-

existing software entity can be reused in a particular environment

[10]. Dependency on the other hand, Component dependency

analysis is crucial to effective maintenance, evolution, testing,

debugging, and management of component based systems.

Considering a system S to be built, the system has a set of defined

functional requirements R1, R2…Rn where n is the number of

functional requirements.

If component based development model is applied it will be a

challenge to find the best increment specifications and the optimal

order at which these increments will be implemented.

Assuming that the software production process Spp is based on a

set of well defined user requirements and by analyzing

dependencies between requirements; our approach aims to

prioritize requirements as components in order to enhance the

process of delivering the system to the customer. Functions

delivered by a system have many relationships between them. For

example, as defined by Pohl [18], all types of dependencies

between functions goes under five main types: the condition

dependency, content dependency, document, evolutionary and

abstraction dependency. Dahlstedt [19] defined three types of

dependency: structure, constrained, and cost/value dependency.

Zhang Zhang [13] suggested a dependency classification for

functional requirements; generally the FRDs can be divided into

three categories: Structural Dependency, Constraint dependency

and Operational Dependency. From these models, we defined

three main relations from which we can order and prioritize the

requirements in an efficient and valuable manner, these functions

are : support(Ri,Rj), Contradict(Ri,Rj), and Before(Ri,Rj).

 Support(Ri,Rj) relation means that the achievement of

requirement Ri is required in order to achieve the requirement

Rj, since Ri give a type to support to Rj such as (input/output)

or (based_on) or (pre-condition).

 Contradict(Ri,Rj): means that the requirement Ri has some

conflict with requirement Rj, thus they could not applied at

the same time.

 Before(Ri,Rj): means that the implementation of Rj as soon as

possible after Ri will result in an advantage such as reduction

of the total implementation cost or adding some value to

whole software development process.

3.5 The Requirements Prioritizing Algorithm
Depending on previous three relations, we present an algorithm to

prioritize requirements and generate the increments in incremental

software development. The algorithm as follows:

Step 1:

Dfine the type of relation between each pair of functioanl

requirments, such that:

 the relation Support(Ri,Rj) equlas 1 if Rj could not be

implemented unless Ri is already done because there is a type

of input/output or inheriance relationships for example.

 the relation Before(Ri,Rj) will be evaluated to 1, if Rj not

dependent on Ri but if we implement it as soon as aposible

after Ri this will add some value or decrease some costs.

 the relation Confict (Ri,Rj) will be evaluated to 1 if the two

requiremnts Ri and Rj could not exist at the same time.

Step 2:

Create a two dimensional matrix where each row represent a

functional requirement and the rows represent the same series of

requirements. Fill the Reltionship Matrix by the values (S, B, or

C) to indicate the type of relation between each pair of

requirements, or a dash symbol (-) to indicate that the two

requirements doen not have any direct relation.

Step 3:

Generate A directed Graph from the Support relationships:

 generate a strat node

 for each requirements in the columns that have no support

relationship in its entire rows, generate a new child node from

the start node (level 1)

 for each node in level 1,search for any support relationship in

its row and create a directed arc from this node to the node

which it supports

Step 4:

Apply the Before relationship:

 assign each node a sequence number following depth first

search path.

 aor each functional requirement, if its row has a Before

relationship with other requirement, be sure that the serial

number of this requirement is less than the serial number for

the other one.

 if the serial numbers are not correct in satisfying the before

relationship, then swap the place of the two branches

containing these requirements.

 re-order the nodes serial numbers to reflect the change done.

Step 5:

Apply the Conflict relationship:

 cut the graph into pieces (increments) such that no two

conflict requirements exist in the same piece of the graph.

 remove any redundant nodes because the requirement should

be implanted once over all the system.

 each piece will represent an increment in the software

development process

 assgin the increments serial numbers according to their order

in graph (depth-first)

3.6 Example of Software System
 In order to test the presented algorithm, a proper example of

software system is required. We use a set of functional

requirements which is taken from an online shopping system

applied by Zhang [13] in his paper. Table 1 lists the FRs

identified from the online shopping system, which can be used as

examples to present the FRD.

Table 1. Functional Requirements for the online shopping system

ID Name Description

REQ 2.1 Display Product

The system displays all

the products to the

customer

REQ 2.2 Select Product

The system allows the

customer to select a

product from the product

list

REQ 2.3 Define amount

The system queries the

customer for the amount

of selected product

REQ 2.4 Define color

The system queries the

customer for the color of

selected product

REQ 2.5 Add Product

The system puts the

product which the

customer selected to his

shopping cart

REQ 3.1 Update amount

The system queries the

customer to update

amount of selected

product

REQ 3.2 Update color

The system queries the

customer to update color

of selected product

REQ 4.1 Display order

The system displays the

detail information of the

order to the customer

REQ 5.1 Confirm order

The system prompt the

client to confirm the

acceptance of the order

REQ 6.1 Send mail

The system sends an

information mail to the

customer's email address

REQ 7.1 Display notice

The system displays a

successfully notices to the

customer in order to

inform the customer that

the order has been

accepted

Table 2. The filled matrix

To apply the algorithm, we need to generate a two dimensional

matrix where columns and rows represents the same set of

functional requirements. And then fill the matrix by symbols (S,

C, or B) to indicate the type of relationship between each pair of

requirements. (S refers to Support relationship, B refers to the

Before relationship, and C refers to the Contradict relationship).

Table 2 shows the filled matrix.

From the matrix above, for example we see that define amount

requirement (Req2.3) will support display order requirement

(Req4.1) since we need the result of Req2.3 to start the Req4.1.

While Req2.3 assumed to come before Add product requirement

(Req2.5) since adding product has not input/output or inheritance

relation with Req2.3, but it is expected to require adding some

product after computing the amount for the previous added one.

Requirement Define Color (Req2.4) has a contradict relation with

the requirement Display Order (Req4.1) since it is not logical to

do the same operations at the same time, because displaying the

order stopped any update operation. Next, we need to generate a

directed graph from the support relationships in table 2. Figure 2

below shows the support direct graph; note that Req2.1 for

example has an outcome directed arc to Req2.2 because Req2.1

supports Req2.2 (as analyzed in the relationship matrix).

Figure 2: support relationship directed graph

To apply the Before relationship, we start by giving serial

numbers to each node starting from the start node and flowing

depth first search.(note: we start from the right because we add the

nodes to the graph starting from the right branch) See Figure 3.

Figure 3: Assigning serial numbers to graph nodes

Looking at the matrix we note that, for example, Req2.4 expected

to be implemented before Req3.2 while Req2.4 has serial number

9 and Req3.2 has serial number 6!! Thus we shall swap the two

branches as shown in figure 4.

Figure 4: The graph after swapping two branches

We will note also that Req2.5 need to become before Req5.1,

another swapping happened in Figure 5 to represent the relation

Figure 5: The graph after applying the Before relationship

Now, the last step is to cut the graph into small pieces to represent

the increments. The cut operation depends on the contradict

relationship such that no tow contradicted requirements could

exist in the same increment. Because 2.1 and 2.2has conflict with

4.1, and 5.1 conflict with 2.3 and 3.2, three increments defined as

shown in figure 6.

Note: a small branch is deleted since it is already exist in

increment2 and could not be implemented until implementing

Req2.3 and Req3.2.

Figure 6: The Defined Increments

As a result from this algorithm, we conclude that this system

could be implemented in an incremental model as three

increments:

 Increment 1: Display Products, Select Products, Define Color,

Add Product

 Increment 2: Define Amount, Update Color, Update Amount,

Display Order

 Increment 3: Confirm Order, Send Mail, Display Notice.

4. Conclusion
This paper presented an analysis of factors that affect the

increment selection process in the incremental CBSD. Our study

considers three main factors affect increment selection, namely;

stakeholder's opinion, the expected risk percentage of reuse, and

increments dependency. This paper presented in particular

algorithm to analyze increments dependency to facilitate the

process of prioritizing requirements and increments selection in

an incremental software development process. We used an

example of online shopping system requirements as proof of

concept. Future work will be devoted to test the proposed

algorithm with several case studies.

5. References
[1] Jeetendra Pande, "On Some Critical Issues in Component

Selection in Component based Software Development",

International Journal of Computer Applications (0975 –

8887) Volume 46– No.4, May 2012.

[2] Wes J. Lloyd, "A Common Criteria Based Approach for

COTS Component Selection", Published by ETH Zurich,

Chair of Software Engineering JOT, 2005.

[3] N.Md Jubair Basha, Salman Abdul Moiz," Component

Based Software Development: A State of Art", IEEE-

International Conference on Advances In Engineering,

Science And Management, March 30, 31, 2012.

[4] J. Kontio, "OTSO: A Systematic Process for Reusable

Software Component Selection" University of Maryland,

Maryland, CSTR- 3478, December 1995

[5] DEBAYAN BOSE,"Component Based Development",

Indian Statistical Institute, 2010.

[6] Asif Irshad Khan, Noor-ul-Qayyum, Usman Ali Khan, "An

Improved Model for Component Based Software

Development", Software Engineering 2012, 2(4): 138-146,

[7] M. Morisio and A. Tsoukis, "IusWare: a methodology for

the evaluation and selection of software products," IEE

Software Engineering vol. 144 (3), June 1997

[8] Nitish Madaan and Jagdeep Kaur, "A Survey on Selection

Techniques of Component Based Software", International

Journal of Information & Computation Technology. ISSN

0974-2239 Volume 4, pp. 1245-1250, Number 13 2014

[9] Padmal Vitharana, "Risks And Challenges Of Component-

Based Software Development", Communications Of The

ACM August 2003/Vol. 46, No. 8.

[10] Donald C. Craig, "Compatibility of Software Components

Modeling and Verification", phd thesis, Department of

Computer Science, Memorial University of Newfoundland,

May 2007.

[11] Cleidson de Souza, Erik Trainer, Stephen Quirk, David

Redmiles, "Exploiting the Relationship between Software

Dependencies and Coordination through Visualization",

Conference’08, ACM, 2008.

[12] Donald Firesmith, “Prioritizing Requirements”Journal Of

Object Technology Published by ETH Zurich, Chair of

Software Engineering, 2004 Vol.3, No.8, September-

October 2004, http://www.jot.fm.

[13] Zhang Zhang, “Specifying Functional Requirements

Dependency in the REWiki”, M.Sc. thesis, University of

Tampere School of Information Sciences, Computer

Science, 53 pages, June 2013.

[14] Anne Koziolek, ” Research Preview: Prioritizing Quality

Requirements based on Software Architecture Evaluation

Feedback”, Department of Informatics, University of

Zurich, Switzerland, Publisher Springer-Verlag Berlin

Heidelberg, 2012.

[15] T.Dinesh Parthiban, Mr.R.Kamalraj, Dr.S.Karthik,”

Establishing a Test Case Prioritization Technique Using

Dependency Estimation of Functional Requirement”,

International Conference on Engineering Technology and

Science-(ICETS’14), Vol 3,10,11, February 2014

[16] Patrik Berander, Anneliese Andrews, “Requirements

Prioritization” , in Engineering and Managing Software

Requirements, edited by A. Aurum and C. Wohlin, Springer

Verlag, 2005

[17] He Zhang_,a, Juan Lic, et. al.,” Investigating Dependencies

in Software Requirements for Change Propagation

Analysis” Information and Software Technology June 17,

2013

[18] K. Pohl, “Process-Centered Requirements Engineering”,

Advanced Software Development Series, Research Studies

Press, 1996.

[19] A. G. Dahlstedt , A. Persson, “ Engineering and Managing

Software Requirements, chapter Requirements

Interdependencies: State of the Art and Future Challenges”

Springer, 2005.

http://www.jot.fm/

