Abstract Proof
Please check the AWARDS section on the proof below to determine if this abstract is applying for any awards.

Proof

CONTROL ID: 1525887
PRESENTATION TYPE: Oral Presentation
CURRENT CATEGORY: Renal/Electrolyte and Hypertension
TITLE: CIRCULATING 24,25(OH)2 D CONCENTRATIONS DURING TREATMENT OF VITAMIN D DEFICIENCY.

AUTHORS (FIRST NAME, LAST NAME): Hala M Alshayeb1,3, A. Showkat3, G. Gyamlani2, L Darryl Quarles, B. M Wall2,3

2. Nephrology, VAMC, Memphis, TN, United States.
3. Nephrology, UTHSC, Memphis, TN, United States.

ABSTRACT BODY:
Purpose of Study: We have previously reported resistance to correction of vitamin D deficiency with cholecalciferol therapy in CKD patients, as compared to subjects with normal kidney function (J Invest Med, 2012). Elevated FGF23 levels in CKD stimulate Cyp24a1 expression, suggesting that Cyp24-mediated catabolism of 25(OH)D may contribute to this resistance. To test this possibility 24,25(OH)D2 measured before and after treatment of vitamin D deficiency with cholecalciferol.

Methods Used: Prospective study of 28 patients with 25OHD level < 20 ng/ml who received lU/week of cholecalciferol for 8 weeks. CKD (n=14) were matched with non-CKD group (n=14), race, and diabetes. Response to cholecalciferol was assessed by measuring the changes in serum 25(OH)D and 24,25(OH)2D3 levels.

Summary of Results: There were no significant differences between CKD and non-CKD patients in baseline concentrations of serum albumin, 25(OH)D, 1,25(OH)2D, 24,25(OH)2D3. Baseline intact PTH and FGF23 levels were higher in CKD patients. In a multivariable analysis low pre-treatment 24,25(OH)2D3 level was predicted by low 25(OH)D, high PTH and high FGF23 levels. Cholecalciferol treatment resulted in increases in serum 25(OH)D (18.6 ± 8 ng/ml vs 12.2 ± 9, p<0.03), 1,25(OH)2D (15.7 ± 32.3 pg/ml vs 4.3 ± 23.6, p=0.31), and 24,25(OH)2D3 (1.14 ± 0.89 ng/ml vs 1.02 ± 0.74, p=0). PTH levels decreased after treatment in CKD patients (−42±68 pg/ml, p<0.05), but not in non-CKD patients (−10±25, p=0.16). In a multivariable analysis low post-treatment serum 24,25(OH)2D3 level was predicted by low baseline serum 24,25(OH)2D3 (p= 0.09), low post-treatment 25(OH)D (p<0.03), and high baseline PTH (p<0.01).

Conclusions: 24,25(OH)2D3 increases with cholecalciferol therapy in both CKD and non-CKD subjects, consistent with substrate dependent production. Despite decreased nephron mass in CKD, the similar increment in 24,25(OH)2D3 following cholecalciferol.

SAFMR/SSCI Student Research Award: I do not want to be considered for this award
SAFMR/SSCI Trainee Award: I do not want to be considered for this award
SAFMR/SSCI Young Faculty Award: I do not want to be considered for this award
SSCI Young Investigator Award: I do not want to be considered for this award
SSPR Young Faculty Award: I do not want to be considered for this award
SSPR Young Investigator Award - Basic Science Division: I do not want to be considered for this award
SSPR Young Investigator Award - Clinical Science Division: I do not want to be considered for this award
SSPR/APA Trainee Travel Award: I do not want to be considered for this award
Young Clinician Scientist Award: I do not want to be considered for this award