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ABSTRACT
We introduce a generalization of the Yao graph where the
cones used are adaptively centered on a set of nearest neigh-
bors for each node, thus creating a directed or undirected
spanning subgraph of a given unit disk graph (UDG). We
also permit the apex of the cones to be positioned anywhere
along the line segment between the node and its nearest
neighbor, leading to a class of Yao-type subgraphs. We
show that these locally constructed spanning subgraphs are
strongly connected, have bounded out-degree, are t-spanners
with bounded stretch factor, contain the Euclidean min-
imum spanning tree as a subgraph, and are orientation-
invariant. Since a continuous set of cone angles are possible,
these subgraphs also permit control over the degree of the
graph. We demonstrate through simulations that these sub-
graphs of the UDG combines the desirable properties of the
Yao and the Half Space Proximal subgraphs of the UDG.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network topology ; C.2.4 [Compu-
ter-Communication Networks]: Distributed Systems
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1. INTRODUCTION
An ad hoc network is a system of wireless autonomous

hosts that can communicate with each other without having
any fixed infrastructure. Each host in the network can com-
municate with all other hosts within its transmission range
[1, 2], which we will assume to be a fixed range r for all
hosts. If two hosts are not able to communicate directly
then a multi-hop routing protocol is needed for the hosts to
send packets to each other. We will assume the position of
the hosts can be obtained using GPS, for example, or some
other technique. There are numerous ways to use position
information in making routing decisions [13].

The set of N wireless hosts can be represented as a point
set S in the Euclidean two-dimensional plane R

2, each point
possessing a geometric location. On S, a (Euclidean) graph
can be modeled as a weighted (undirected or directed) graph
G = (S, E) where E is a subset of the pairs of nodes of S
and the weight of an edge uv between nodes u and v is the
Euclidean distance between the nodes which we denote as
|uv|. The weight of a graph is the sum of its edge weights.

Further, in our wireless host model, two nodes are con-
nected by an edge if the Euclidean distance between them
is at most r, the transmission range of the nodes in S. The
resulting graph is called a unit disk graph (UDG(S)). For
node u, we denote the set of its neighbors by N(u). Define
a subgraph of G, P(G), as a t-spanner of G if the length
of the shortest path between any two nodes in P(G) is not
more than t times longer than the shortest path connecting
them in G, where t is the stretch factor. The length of the
path is the sum of the lengths of the edges along the path.
A t-spanning path from a to b is strong if the length of every
edge in the path is at most |ab|. The graph G is a strong
t-spanner if there is a strong t-spanning path between every
pair of vertices.

Many routing strategies use a spanning subgraph of the
unit disk graph such that only the edges in the subgraph
are used for routing. Therefore, much research effort has
gone into the development of algorithms for topology con-



trol for ad hoc networks (see [9, 14] for surveys). Since the
wireless hosts that we are modeling are commonly powered
by a limited power supply like a battery as well as con-
taining a limited amount of memory, may be mobile, and
the topology of the whole network is usually not available
and may be variable, localized algorithms (using information
on neighboring nodes up to a fixed number of hops away)
are typically preferred. These algorithms are designed to
achieve various objectives such as bounding the node degree
[17], planarity [3, 7, 16], low weight (close in weight to a
minimal spanning tree) [12], power efficiency [11], bounding
the stretch factor [10], or creating a bounded degree planar
power spanners of a UDG(S) with bounded power stretch
factor (where the cost of a path is the sum of Euclidean
lengths raised to some exponent p between 2 and 5 of all
the edges in the path) [8, 15]. For a geometric graph G, an
Euclidean Minimum Spanning Tree EMST(G) is a minimum
weight spanning tree of G. Several subgraphs also contain
the EMST(G) as a subgraph [6, 18]. In particular, we are
interested in the Half Space Proximal subgraph [6] and Yao
subgraph [18] derived from the unit disk graph.

For a geometric graph G, a Yao Graph (also called a Theta
Graph [5]) YGk(G) with an integer parameter k ≥ 6 is de-
fined as follows [18]. First, we will define a directed Yao
graph, D-YGk(G), for G. At each node u in G, k equally-
separated rays originating at u define k cones. In each cone,
only the directed edge (u, v) to the nearest neighbor v, if
any, is part of D-YGk(G). Ties are broken arbitrarily. Let
YGk(G) be the undirected graph obtained if the direction
of each edge in D-YGk(G) is ignored, yielding a subgraph
which may have crossing edges if G = UDG. The graph
YGk(G) is a 1/(1 − 2 sin(π/k))-spanner of G [11], has an
out-degree of at most k, and contains the EMST(G) as a
subgraph [18]. One drawback of the YGk(G) graph is that
it is not orientation-invariant. That is, if G is rotated by
an arbitrary angle to give G′ then the resulting YGk(G′)
subgraph is not necessarily a rotation of YGk(G).

For a geometric graph G, a Half Space Proximal Graph
HSP(G) is defined as follows [6]. As with the Yao Graph,
first a directed D-HSP(G) is defined. At each node u in G,
the following iterative procedure is performed until all the
neighbors of u are either discarded or are connected with
an edge. A directed edge (u, v) is formed with the nearest
neighbor v. An open half plane is defined by a line perpen-
dicular to (u, v), intersecting (u, v) at its midway point, and
containing v. All the nodes in this half plane are then dis-
carded. The procedure then continues with the next nearest
non-discarded neighbor and so on until all the nodes have
been discarded. The selected directed edges determine the
D-HSP(G). The undirected HSP(G) is obtained by ignoring
the direction of the edges, yielding a subgraph that may still
have crossing edges. Among the properties shown in [6] for
the HSP subgraph that it is strongly connected, has an out-
degree of at most six, has a stretch factor of at most 2π +1,
contains the EMST(G) as its subgraph, and is orientation-
invariant. Bose et al. [4] show that this stretch factor of at
most 2π + 1 is incorrect and that no upper bound is known
although the stretch factor is at least 3 − ǫ. Another draw-
back of the HSP(G) graph is that, since the forbidden region
is always defined by a straight line, there is no control over
the degree of a node.

Recently, Bose et al. [4] introduced a family of directed
geometric graphs, related to the HSP, that depend on two

parameters λ and θ. For 0 ≤ θ < π/2 and 1/2 < λ < 1, their
graph is a strong t-spanner, with t = 1/((1−λ) cos(θ)). The
out-degree of a node at most ⌊(2π/(min(θ, arccos(1/2λ)))⌋.

In the next section, we generalize the definition of the
Yao graph to define a class of orientation-invariant Yao-type
graphs which includes the HSP graph as a special case. This
class of Yao-type graphs combines the advantages of both
the HSP subgraph and the Yao subgraph by permitting con-
trol over the degree of the subgraph while being orientation-
invariant. For these graphs, in Section 3, we explore their
properties experimentally.

2. DISPLACED APEX ADAPTIVE YAO
GRAPHS

In this section, we give a formal definition of a class of Yao-
type graphs and prove some basic properties of the graphs.
Let S be a set of N points in the Euclidean two dimensional
plane, each point possessing a geometric location. For the
following, define the cone angle θ to be the half-angle of the
cone’s apex.

We will use the parameter s to parametrize the closed line
segment between u and v: (1 − s)u + sv, 0 ≤ s ≤ 1. Any
particular choice of s represents the position of the apex of
the cone. We will use a second parameter α, 0 ≤ α ≤ 1,
to determine θ as a fraction of the maximum cone angle,
θm(s, |uz|), which we define shortly, which is a function of
s and the distance from the current node u to the nearest
neighbor z for which the cone is determined.

Algorithm 1 Displaced Apex Adaptive Yao(G, α, s) graph
algorithm

Input: A graph G with the node set S, an angle parameter
α, and a parameter s.
Output: A list of directed edges L for each node u ∈ S
which represent the Displaced Apex Adaptive Yao subgraph
of G, DAAY(G, α, s).
for all u ∈ S do

Create a list of neighbors of u: LN(u) = N(u).
repeat

(a) Remove the nearest neighbor z node from LN(u)
and add the directed edge uz to L.
(b) Determine θm(s, |uz|) such that θ = α·θm(s, |uz|).
(c) Let r = (1−s)u+sz be a point on the line segment
uz.
(d) Consider the cone C with its apex at r with a
cone angle θ and z in its interior, such that the line
uz bisects the cone C into two equal halves (i.e., the
segment uz lies in the center of the cone).
(e) Scan the list LN(u) and remove each node in the
interior of C.

until LN(u) is empty
end for

Definition 1. Let G be a UDG with node set S. The di-
rected Displaced Apex Adaptive Yao subgraph, D-DAAY(G,
α, s), is defined to be the graph with node set S whose
edges are obtained by applying the Displaced Apex Adaptive
Yao(G, α, s) algorithm, Algorithm 1, on the graph G using
cone angle θ = α ·θm(s, |uz|) and apex displacement param-
eter s. The undirected graph DAAY(G, α, s) is obtained by
ignoring the direction of the edges in D-DAAY(G, α, s).



(a) (b) (c)

Figure 1: Applying the Displaced Apex Adaptive
Yao(UDG, 1, 0) graph algorithm on the node u of a
UDG: (a) the nearest neighbor is first chosen; (b) the
second nearest node out of the rest of the nodes is
chosen. Note that its associated cone overlaps with
the first cone; and (c) the third nearest neighbor is
chosen from the list LN(u).

When s = 0, we simply refer to the resultant graph as the
Adaptive Yao graph. Note that the directions of the cones
used in the Displaced Apex Adaptive Yao(G, α, s) algorithm
only depend on the relative directions of the selected near-
est neighbors. Therefore, the resultant subgraph is the same
regardless of the orientation of the point set S. Hence the
DAAY(G, α, s) is orientation-invariant. See Fig. 1. The run-
ning time of Algorithm 1 per node is O(l2) where l is the
degree of the node and results in a subgraph that may still
have crossing edges.

After determining some properties of cone angles, we de-
fine the maximum cone angle θm(s, |uz|).

Lemma 1. Consider a node u and neighbor z of u. Con-
sider an arbitrary point k = (1−s)u+sz where the parameter
s has a value in the range [0, 1]. Define L to be the line per-
pendicular to the line segment uz and that intersects uz at
its midpoint m (corresponding to s = 0.5 in the above line
equation). Define a cone with cone angle θ, with its apex
at k, oriented such that z is in its interior and the segment
uz lies in the center of the cone. See Fig. 2. Consider the
boundary of this cone intersecting the line L at a point c.
Then the cone angle θ satisfies

sin(θ − θ0)

sin(θ)
=

s|uz|

|uc|
, where cos (θ0) =

1

2

|uz|

|uc|
.

Proof. Consider the triangle △uck. Let θ0 be the in-
terior angle at u. Then the interior angle at c is θ − θ0.
The interior angle can be determined from the right trian-

gle △muc, cos (θ0) = 1

2

|uz|
|uc|

. Also, the interior angle at k is

π − θ. By the sine law,

sin(θ − θ0)

sin(θ)
=

s|uz|

|uc|
.

Corollary 1. Using the same definitions as in Lemma 1, if
|uc| = |uz| then θ0 = π/3 and

sin(θ − π/3)

sin(θ)
=

s|uz|

|uz|
= s.

Definition 2. Using the same definitions as in Lemma 1,
define the maximum cone angle θm(s, |uz|) as follows, as a

function of the parameter s and the distance |uz|:

sin
`

θm(s, |uz|) − π
3

´

sin(θm(s, |uz|))
= s if 0 ≤ s < 0.5

sin
“

θm(s, |uz|) − cos−1

“

1

2

|uz|
r

””

sin(θm(s, |uz|))
=

s|uz|

r
if 0.5 ≤ s ≤ 1

Note that when 0 ≤ s ≤ 0.5, then θm(s, |uz|) is only a
function of s such that θ is a fixed angle for fixed values of s
and α. When s = 0.5, θm(0.5, |uz|) = π/2 and, if α = 1 such
that θ = θm(0.5, |uz|), we obtain the Half Space Proximal
subgraph [6].
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Figure 2: Figure for Theorem 1. The top diagram
is for 0 ≤ s < 0.5. The bottom diagram is for 0.5 ≤
s ≤ 1. In both diagrams, the dark shaded area is
the forbidden region where any other neighboring
nodes are excluded. The radius of the outer ring is
the transmission range r.

Theorem 1. Consider a node set S and UDG(S) defined
on S. If UDG(S) is connected and the cone angle θ is less
than or equal to θm(s, |uz|) then D-DAAY(UDG(S), α, s) is
strongly connected.

Proof. Consider a proof by contradiction. Assume that
there is at least one edge uv ∈ UDG(S) such that there is
no directed path from u to v in D-DAAY(UDG(S), α, s).



Let uv be the shortest such edge in UDG(S). This im-
plies that there is an edge uz ∈ D-DAAY(UDG(S), α, s)
such that |uz| < |uv|, because the edge uv should be in
the cone of uz selected by the Displaced Apex Adaptive
Yao(UDG(S), α, s) algorithm.

Now consider the triangle △uzv in Fig. 2. The choice of
maximum cone angles in Def. 2 is based on the idea that it
ensures that v is contained in the open half-plane H contain-
ing z defined by the line perpendicular to the line segment
uz in the middle of uz (the point corresponding to s = 0.5
in our parametrization of the uz; labeled as m in Fig. 2).
Consider the two cases defined by the value of s. First, as-
sume 0 ≤ s < 0.5 (for example, the apex of the cone would
be at the point labeled as k in the figure). Then to keep v
in the interior of H, the maximum cone angle for θ would
define a cone that intersects the boundary of H at a point
at distance |uz| from u (such a point is labeled as c in the
figure). By Corollary 1, θm(s, |uz|) is as defined in Def. 2.

Now, assume 0.5 ≤ s ≤ 1. To keep v in the interior of
H, the maximum cone angle for θ would define a cone that
intersects the boundary of H at a point at distance r from
u (such a point is labeled as c in the Fig. 2). By Lemma 1
and noting that |ud| = r, θm(s, |uz|) is as defined in Def. 2.

In either case, since the cone angle is less than or equal to
θm(s, |uz|), then any position of the node v inside the cone
for z such that |uz| ≤ |uv| would give |zv| strictly less than
|uv|. Since uv is an edge in UDG(S), then zv is also an edge
in UDG(S). Therefore, there exists a directed path from z
to v in D-DAAY(UDG(S), α, s), and so there is a directed
path from u to v in D-DAAY(UDG(S), α, s).

Note that when s > 0.5, the further away the nearest
neighbor z, the larger the cone angle limit θm(s, |uz|). If a

fixed cone angle θ̂ was used, since as |uz| → 0 the cone angle

approaches π/2, it would have to be θ̂ ≤ π/2 to ensure con-

nectedness. Using θ̂ = π/2 would then give a variation of
the Half Space Proximal subgraph with the forbidden zone
half-plane intersecting the line segment uz at the point cor-
responding to s > 0.5 rather than at the midway point. We
will not consider this variation of the HSP graph.

Theorem 2. The out-degree of any node in D-DAAY(U-
DG(S), α, s), θ = α · θm(s, |uz|), 0 ≤ α ≤ 1, is at most
—

2π

φ

�

where φ is defined by

sin (θ − φ)

sin(θ)
= s. (1)

Proof. From the definition of Displaced Apex Adaptive
Yao(G, α, s), the smallest angle between any two edges is θ
because any nearest neighbor selected to form an edge will
be outside, or on the boundary of, the cone for any other
neighbor. Consider a node u. Let z be the nearest neighbor
that defines a cone. For 0 ≤ s < 0.5, the smallest angle
between z and another nearest neighbor w is if w is placed
at the intersection c of the cone boundary and the circle of
radius uz centered on u (the point labeled as c in Fig. 2). By
Corollary 1, the angle between c and z about u is defined by
Eq. 1. If α = 1 such that θ = θm(s, |uz|), φ = π/3. Similarly,
for 0.5 ≤ s ≤ 1, the smallest angle between z and another
nearest neighbor w is if w is placed at the intersection e of
the cone boundary and the circle of radius uz centered on
u (the point labeled as e in Fig. 2). It is straightforward to

ui
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Figure 3: A scenario for the worst shortest path
that could be selected in Displaced Apex Adap-
tive Yao(G, α, s). The edge (u0, v) is not selected
by the Displaced Apex Adaptive Yao(G, α, s) algo-
rithm since (u0, u1) is shorter than (u0, v), and (u0, v)
is inside the cone of (u0, u1). The same occurs for
(u1, v), . . . , (um, v). Box: One step of the iterative se-
quence of the path.

show, using a proof similar to that for Lemma 1 and noting
that |ue| = |uz|, that the angle φ between e and z about u is
also defined by Eq. 1. Therefore, the angle between any two
selected edges will be greater than or equal to φ, which is a
function of s. So, the maximum out-degree for any node will

be
2π

φ
. Any fraction of a cone overlapping in the worst case

will not add to the out-degree of the node, so the maximum

integer out-degree of any node is be

—

2π

φ

�

.

For example, if s = 0 and θ = π/3, then φ = θ and the
maximum out-degree of any node is 6.

Theorem 3. Let S ⊆ R
2 be a set of N points and let

θ < π/3 be the cone angle. Then DAAY(UDG(S), α, s) is a

spanner with stretch factor
1

1 − 2 sin( θ
2
)
.

Proof. Let uv be an edge in UDG that is not selected by
Displaced Apex Adaptive Yao(G, α, s) algorithm. Since, by
Theorem 1, DAAY(UDG(S), α, s) is connected, then there
is a shortest path from u to v. Let a“worst”such path from u
to v in DAAY(UDG(S), α, s) be u0 = u, u1, u2, . . . , um = v.
See Fig. 3. By the Displaced Apex Adaptive Yao(G, α, s) al-
gorithm, the angle ∠ui+1uiv ≤ η (which we will determine)
and |uiui+1| < |uiv| since otherwise uiv would be part of
DAAY(UDG(S), α, s) and part of the path. Also, by The-
orem 1, |ui+1v| < |uiv| since we can always decrease the
distance to v from each ui along the path.

Now consider the triangle △uiui+1v. See Fig. 3. Let a
be the point on uiv such that |uia| = |uiui+1|. By the



triangular inequality |ui+1v| ≤ |ui+1a| + |av|. Note that

|ui+1a| = (2 sin
η

2
)|uiui+1|, and |av| = |uiv| − |uiui+1|. Ap-

plying these two latter equations to the triangular inequality,
we obtain

|ui+1v| ≤ |uiv| − |uiui+1|(1 − 2 sin
η

2
).

Applying the previous analysis iteratively on the entire
path, we have
P

0≤i<m |ui+1v| ≤
P

0≤i<m

`

|uiv| −
`

|uiui+1|(1 − 2 sin η

2
)
´´

.
Therefore,

X

0≤i<m

(|uiui+1|) ≤

„

1

1 − 2 sin η

2

«

X

0≤i<m

(|uiv| − |ui+1v|)

≤

„

1

1 − 2 sin η

2

«

|u0v|.

Note that for the stretch factor to be bounded by this in-
equality, then η must be restricted by η < π/3.

To determine the value of η, first consider the largest angle
possible between ui, v, and ui+1. The larger the angle, the
larger the stretch factor along the path. If ui+1 is a nearest
neighbor of ui defining a cone during the execution of the
Displaced Apex Adaptive Yao(G, α, s) algorithm, then plac-
ing a node f at the intersection of the cone boundary and
the boundary of the circle of radius r centered at ui would
give the largest angle (e.g., at position d in Fig. 2). Defining
a triangle △uifui+1 and using a similar analysis as used in
the proof for Lemma 1, the internal angle η at ui is

sin(θ − η)

sin(θ)
=

s|uiui+1|

|uif |
.

Note that as |uiui+1| → 0, the angle η is maximized. For
0 ≤ s < 0.5, this maximum angle is θ, and for 0.5 ≤ s ≤ 1,
this maximum angle is π/2. To ensure that η < π/3, in
both cases, we must restrict θ < π/3 to bound the stretch
factor.

Theorem 4. Consider a node set S and UDG(S) defined
on S. Assume that UDG(S) is connected. Then DAAY(U-
DG(S), α, s), θ = α · θm(s, |uz|), 0 ≤ α ≤ 1, contains the
Euclidean Minimum Spanning Tree EMST(UDG(S)) as a
subgraph.

Proof. This proof is closely modeled on a similar proof
for the HSP(UDG(S)) (see [6]) and is included for com-
pleteness. Let EMST(UDG(S)) be an Euclidean Minimum
Spanning Tree of UDG(S) that contains the maximum num-
ber of edges of DAAY(UDG(S), α, s). Consider a proof
by contradiction. Assume there is an edge uv in EMST(-
UDG(S)) that is not in DAAY(UDG(S), α, s). This implies
that there is an edge uz ∈ DAAY(UDG(S), α, s) such that
|uz| ≤ |uv|, because the edge uv should be in the cone of an-
other shorter edge selected by the Displaced Apex Adaptive
Yao(UDG(S), α, s) algorithm, and |vz| < |uv| (otherwise,
by Theorem 1, the D-DAAY(UDG(S), α, s) would not be
strongly connected). Since EMST(UDG(S)) is a spanning
tree, there is a path from v (or u) to z. If the path is from
v to z, then removing uv from the graph and adding the
edge uz we obtain a spanning tree with equal or less weight
with an additional edge from DAAY(UDG(S), α, s), a con-
tradiction. If the path is from u to z, then removing uv from
the graph and adding the edge vz we obtain a spanning tree
with less weight, again a contradiction.

3. SIMULATION RESULTS
In our experiments we used randomly chosen connected

unit disk graphs on an area of 100 × 100. We varied the
number of nodes, N , between 65, 75, 85, 95, and 105 nodes.
For all the results reported here (unless indicated), the re-
sults have been averaged over 23 graphs for each value of N .
For all graphs, the transmission radius r used was 15 units.

In Fig. 4 we study the dependence of the Displaced Apex
Adaptive Yao subgraphs on s and α. For all the plots, it is
obvious that there is a stronger dependence on α than s. In
addition, for the maximum node degree, average node de-
gree, average number of edge crossings, and average weight,
there is appears to be symmetry about the s = 0.5 value,
which appears more pronounced for larger α values. For ex-
ample, minimum for the average number of crossing edges
occurs at α = 1 and s = 0.5 with a total of two crossing
edges over the 23 subgraphs. As is apparent from the iso-
contours, for these latter four graph properties, about the
minimum at s = 0.5, for α = 1, the values are larger as s
goes to 0 as compared to the values as s goes to 1.

The dilation for a pair nodes u, v, u 6= v, is the ratio of the
shortest length path between u and v in the subgraph over
that for the original UDG. The path length is computed in
terms of the number of hops along the path or the sum of the
Euclidean lengths of the edges of the path. The maximum
is taken over all distinct pairs u, v in the graph. The trends
for the node degree, weight and number of edge crossings
are reflected in the dilation plots in Fig. 4 except that for
large α values, the dilation values are maximum at s = 0.5.
In addition, for α = 1, while the s = 0 Euclidean dilation
values are larger than the s = 1 values (1.76 compared to
1.69), the situation is reversed for the hop number dilation
(3.30 for s = 0 compared to 3.61 for s = 1). One primary
observation that can be made from Fig. 4 is that, despite
Theorem 3 stating that the stretch factor may be unbounded
for θ ≥ π/3 (which occurs at α = 1 for s = 0 and at α = 2/3
for s = 0.5, for example), there appears to be no abrupt
change in the dilation values as this α threshold is crossed.

For the rest of our simulations, for each UDG, an Adap-
tive Yao subgraph (equivalent to a Displaced Apex Adaptive
Yao subgraph with s = 0), Displaced Apex Adaptive Yao
subgraphs with s = 0.125 and s = 0.25, Half Space Proxi-
mal subgraph (equivalent to a Displaced Apex Adaptive Yao
subgraph with s = 0.5), and Displaced Apex Adaptive Yao
subgraphs with s = 0.75 and s = 1.0 are generated. For
each Displaced Apex Adaptive Yao subgraph we used α = 1
such that θ = θm(s, |uz|) (recall, for s > 0.5, θ is a function
of the distance to the chosen neighbor defining the cone).
For comparison, we also generate the original Yao subgraph
with k = 6 for each UDG.

The following tests were done on the undirected version
of each of the graphs mentioned above: 1) Average Degree
(Fig. 8); 2) Maximum path dilation, in terms of both hop
number and Euclidean distance (Fig. 5); 3) Average path
dilation, in terms of both hop number and Euclidean dis-
tance (Fig. 5); 4) Weight of each graph (Fig. 6); 5) Num-
ber of crossing edges of each graph (Fig. 6); and 6) Degree
distribution of each graph (Fig. 7). Also, in Fig. 8, for the
directed versions of the Yao subgraph with k = 6, the Adap-
tive Yao subgraph, Displaced Apex Adaptive Yao subgraphs
with s = 0.125 and s = 0.25, Half Space Proximal subgraph,
and Displaced Apex Adaptive Yao subgraphs with s = 0.75
and s = 1.0, we also measured 1) Maximum in-degree; 2)
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Figure 4: Plots of various Displaced Apex Adaptive Yao subgraph properties as a function of s and α. The
values are averaged over 23 graphs with N = 75 nodes. The contours projected on the s-α plane are isocontours
of evenly spaced values on the surfaces.

Average in-degree; 3) Maximum out-degree; and 4) Average
out-degree.

As s approaches 0.5, from Fig. 8, the average and max-
imum node degrees monotonically decrease until s = 0.5
when we have the HSP graph. Then as s continues to in-
crease to 1, the node degrees begin to increase again. This
holds true across all values of N . We can see this trend re-
flected in the histograms of the node degrees in Fig. 7. Also,
as we can see in Fig. 6, although the weights of the graphs
follow the same trend as the node degrees, the number of
crossing edges as s goes from 0.5 to 1 increases only slowly.

In terms of the dilations of the graphs, the Adaptive Yao
graph (s = 0) has consistently the lowest maximum and av-
erage (hop number or Euclidean length) dilations. For our
simulations, the dilation for the Adaptive Yao graph was
about halfway between that of the HSP and the Yao graph
with k = 6. As s increases to 0.5, the dilations increase
to a maximum for s = 0.5. Then, mirroring the trends for
node degree and the weights of graphs, the dilation again de-
creases as s approaches 1. In particular, for the average and
maximum Euclidean dilations, the drop is more significant.

The reason for this behavior (also seen in the edge cross-
ings plot in Fig. 4) is that for s > 0.5 we obtain a graph that
maintains many of the properties of the HSP graph but with
additional short edges. These edges are added since the in-
verted cone leaves a couple of gaps on either side of the
directed edge to the chosen nearest neighbor (e.g., within
the region defined by cde in Fig. 2) where additional close
neighboring nodes may be selected. Although these addi-
tional edges are added and the node degrees of the graphs
go up, the weights and the number of crossing edges increase
more slowly.

4. CONCLUSION
In this paper, we present a class of Yao-type graphs that

combine the advantages of both the HSP subgraph and the
Yao subgraph by permitting control over the degree of the
subgraph while being orientation-invariant. Indeed, the de-
gree control is continuous since any cone angle less than
θm(s, |uz|) can be used as differs from the Yao graph where
only a discrete set of cone angles (π/k) are possible. Since
the experimental path dilations appear to be bounded de-
spite using α = 1, it would appear that the actual stretch
factor upper bounds are better behaved than indicated by
Theorem 3 when θ ≥ π/3. In addition, unlike the Yao sub-
graph, the class of DAAY subgraphs easily extend to three
dimensional UDGs. The class of graphs presented also pre-
serve the common properties of the Yao and HSP graphs
such as bounded out-degree, having the EMST as a sub-
graph, and being spanner graphs with bounded stretch fac-
tor.
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