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ABSTRACT
The satisfiability problem (SAT), as one of the six basic
core NP-complete problems, has been the deserving object
of many studies in the last two decades [3, 2]. GASAT
[4, 3, 2] is one of the current state-of-the-art genetic algo-
rithms for solving SATs. Besides, the discrete lagrange-
multiplier (DLM) [7, 8] is one of the current state-of-the-
art local search algorithms for solving SATs. GASAT is a
hybrid algorithm of the genetic and tabu search techniques.
GASAT uses tabu search to avoid restarting the search once
it converges. In this paper, we improve GASAT by replac-
ing the tabu search by the DLM algorithm. We show that
the performance of the new algorithm is far better than the
performance of GASAT in solving most of the benchmark
instances.
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1 Introduction

The satisfiability problem (SAT), as one of the six basic
core NP-complete problems, has been the deserving object
of many studies in the last two decades [3]. In addition
to its theoretical importance, SAT has a large number of
practical applications such as VLSI test and verification,
the design of asynchronous circuits, sports planning and so
on [3].

There are many methods of search techniques for
solving the SATs like backtrack-based, genetic, neural net-
work and local search algorithms. The genetic algorithm
for the SATs (GASAT) [4, 3, 2] and SAT-WAGA [6] are
two of the current state-of-the-art genetic algorithms for
solving the SATs. Besides, the discrete lagrange-multiplier
(DLM) [7, 8] and the exponentiated subgradient algorithm
(ESG) [10] are the current state-of-the-art local search al-
gorithms for solving the SATs. GASAT is a hybrid algo-
rithm based on SAT specific crossover operators combined
with tabu search [2]. Within GASAT, specific crossover
operators are used to identify particular promising search
areas while tabu search performs an intensified search of
solutions around these areas [2]. In such a way, we hope to
be able to achieve a good compromise between intensifica-
tion and diversification in the search procedure [2].

In this paper, we replace the tabu search algorithm in
GASAT by DLM [7, 8, 13]. We name the new algorithm
DGASAT. We show through experiments that the results
of the DGASAT is far better than the results of GASAT in
solving most of the benchmark instances.

The rest of this paper is organized as follows. Section
2 presents the SAT. Section 3 introduces the state-of-the-art
genetic algorithm: GASAT. Section 4 presents the DLM
local search algorithm. After that, section 5 presents our
new algorithm DGSAT. Section 6 compares the results of
GASAT with DGASAT. The last section gives the conclu-
sion remarks.

2 The Satisfiability Problem

In a SAT, a propositional variable can take the value of ei-
ther 0 (false) or 1 (true). A literal is either a variable x or
its complement x̄. A literal l is true if l assumes the value
1; l is false otherwise. A clause is a disjunction of literals,
which is true when one of its literals is true. For simplic-
ity we assume that no literal appears in a clause more than
once, and no literal and its negation appear in a clause. A
SAT is a propositional logic formula which consists of a
finite set of clauses (treated as a conjunction). Let l denote
the complement of literal l: l = x̄ if l = x, and l = x
if l = x̄. Let L = {l | l ∈ L} for a literal set L. The
conjunctive normal form propositional logic formula is a
conjunction of a set of clauses. There are many encoding
techniques to convert a propositional logic formula which
is not in a conjunctive normal form to a conjunctive normal
form (see for more details [11, 12]). A valuation is a com-
plete assignment to all the variables in the SAT. A solution
is a valuation that satisfies all the clauses in the SAT.

3 The GASAT Algorithm

Lardeux et al. [3] and Hao et al. [4] introduce GASAT
1. Figure 1 presents GASAT. In GASAT, each member of
the population is a binary string of n bits, where the n bits
represent the variables in the problem. Each bit can take the
value of either 0 or 1 which are the same values a Boolean

1The source code is downloadable from
http://www.satlive.org/satkwd.jsp?kwd=79



variable can take. GASAT starts the search by generating
an initial population randomly in which each variable in
each member takes a value randomly.

1- p = CreatePopulation(),
Improve each member in p by Tabu Search

2- while (no solution found and the
time is not over)

3- b = SelectBestIndividuals(p)
4- Choose x and y from b /*the parents*/
5- z = Crossover(x, y) /*z is the child*/
6- z = Tabu(z, maxflip)

/*improve z by Tabu Search*/
7- if z is better than the worst member in b
8- add z to p
9- else discard z
10- If solution found return a solution
11-else return the best answer found

Figure 1: GASAT

Then the fitness value of every member is calculated.
The fitness value of a member is equal to the number of
clauses which are not satisfied by this member. Therefore,
the low value of a member’s fitness indicates that this mem-
ber is good. Zero is the optimal fitness. GASAT chooses
a set of the best individuals b from the population, where
the size of b is a parameter. It then chooses randomly par-
ents from b. In order to avoid the case in which the selected
parents are similar and to keep diversity in the population,
GASAT accepts the selected parents if there is a k hamming
distance between these selected parents, where k is a pa-
rameter. GASAT selects two parents and uses the crossover
operator to produce a child. This child is further improved
by using the tabu search local search algorithm. In each
step (move) of tabu search, GASAT chooses the best vari-
able to flip which is not in the tabu list. The best variable
is the variable once flipped satisfies the maximum number
of clauses with compare to the other variables. The size of
the tabu list and the number of the tabu search moves are
parameters in GASAT. The tabu list is a fixed size array of
size x. It stores the last x flipped variables. Once a variable
is flipped, it is not allowed to be flipped in the coming x
flips. After a variable is flipped, the first flipped variable
in the tabu list is removed and is replaced by the newly
flipped variable (in a FIFO manner). But, the tabu search
used in GASAT has an exception; if the move leads to a
better state than the best ever found, GASAT allows this
move even if this move is in the tabu list. The tabu search
used in GASAT is the same as the one used by Mazure et.
al. [1].

The main goal of the crossover operator in GASAT
is to create diversified and potentially promising new indi-
viduals [3]. GASAT has three different crossover opera-
tors: corrective clause, corrective clause and truth mainte-
nance, and Fleurent and Ferland. In an experimental com-
parisons, Lardeux et al. [3] show that the performance of
these crossover operators are far better than the classic uni-

form crossover operator. The three crossover operators pro-
duce one child from the parents: Crossover(x, y) ⇒ child
z. GASAT uses one of the three crossovers at a time ac-
cording to the following three cases: a clause is satisfied by
the two parents, a clause is satisfied by one parent, and a
clause is not satisfied by the two parents.

The classic uniform crossover operator assigns value
for each variable by choosing one of the values assigned
for this variable by the parents.

The corrective clause crossover: when a clause c is
not satisfied by the two parents x and y, this crossover
flips one of the variables v in c to satisfy c. In order
to choose v, it passes by all the clauses which are cur-
rently unsatisfied by x, y and the child z, where the vari-
ables in z initially have no values, and computes δ(f)
for every variable f appears in these clauses, where δ(f)
= imp(x, f) + imp(y, f), imp(d, e) = satisfied(d, e)-
unsatisfied(d, e), satisfied(d, e) returns the number of
unsatisfied clauses in valuation d that becomes satisfied by
flipping e, and unsatisfied(d, e) returns the number of
satisfied clauses in valuation d that becomes unsatisfied by
flipping e. The corrective clause crossover flips the variable
f which has the maximum value of δ(f).

The corrective clause and truth maintenance
crossover applies the corrective clause crossover and
then applies the following procedure. Compute δ(f) for
every variable f appears in clause c, where c is a clause
satisfied by the two parents and is not satisfied by the child
z. Finally, the corrective clause and truth maintenance
crossover chooses the variable to flip with maximum δ.

Fleurent and Ferland’s crossover: when a clause c is
satisfied by one parent and not satisfied by the other parent,
this crossover assigns the values for the variables appear-
ing in c the same values taken in the parent that satisfies c.
These variables and their values are then copied to the child
z.

After applying the previous crossovers, if any variable
in z is left with no value, GASAT chooses one of the values
for this variable from its parents randomly, that is, if v in z
has no value, and v has the values 0 and 1 in the parents x
and y respectively, GASAT choose either 0 or 1 randomly.

After a child z is produced (line 5) by the crossover
operator and further improved by the tabu search algorithm
(line 6), it is inserted (line 8) in the population p if it is
better than the worst member in b. The tabu search moves
maxflip times before returning the answer. Note that the
size of the population p is increasing.

4 The DLM Algorithm

DLM [7, 8, 13] is a discrete Lagrange-multiplier-based
local-search method for solving the SATs, which are first
transformed into a discrete constrained optimization prob-
lem. Figure 4 shows the core of DLM2. Experiments

2Downloadable from www.manip.crhc.uiuc.edu/
Wah



confirm that the discrete Lagrange multiplier method is
highly competitive with other satisfiability problems solv-
ing methods [7].

1- DLM(c)
2- let s be a random valuation for var(c)
3- λ = 1; nflips = 0
4- while (L(s, λ) > 0 and

(nflips ≤ maximum flips))
5- min := L(s, λ)
6- best := {}
7- unsat := the literals in unsat clauses
8- for each literal l ∈ unsat

9- s′ := s − {l} ∪ {l}
10- if (L(s′, λ) < min)

/*it is a better downhill move*/
11- min := L(s′, λ)
12- best := {l}
13- s := s′

14- else if (((L(s′, λ) = min) and
(l is not in the tabu list))

15- best := best ∪ {l}
16- if (best is empy) it is trap, do learning
17- else s := s - {var := a randomly chosen

element from best} ∪ { var }
nflips = nflips + 1

18- if (Lag. M. update condition holds)
19- λ := λ + x
20-return s

Figure 2: DLM (core algorithm)

In DLM, each clause c is given a penalty function on
states, so ci(s) = 0 if state s satisfies constraint ci, and
ci(s) = 1 otherwise. DLM performs a search for a saddle
point of the Lagrangian function

L(s, λ) = λ · c(s) = Σiλi × ci(s)

where λ are a vector of Lagrange multipliers, one for
each constraint, which give the “penalty” for violating that
constraint. The saddle point search changes the state to
decrease the Lagrangian function, or increase the Lagrange
multipliers.

In Figure 4, line 1 shows that the input to DLM is a
set of clauses c. Line 2 makes a random initialization to
all the variables. Line 3 initializes λ and nflips to 1 and
0 respectively. Line 4 repeats the search until it finds a
solution or reaches a maximum number of flips. L(s, λ) =
0 means no constraint is violated, i.e. c(s) = 0, for each
constraint c in the problem.

Lines 5, 6 and 7 set min, best and unsat to the La-
grangian function of the current state s, empty and the set
of all the literals in the unsatisfied clauses respectively. We
call the local move if it is to a better and equal neighbours
a downhill and flat moves respectively. Lines 9-15 save
the best neighbors in best. Note that every variable in best
must either make a downhill move or it is not in the tabu

list making a flat move. DLM restricts the tabu list to the
flat moves only. If best is empty then it is a trap, line
16 makes learning. In learning, DLM increases the La-
grangian multipliers of the unsatisfied/all clauses according
to a parameter. Line 17 moves from the current state to one
of the best neighbours by flipping the variable var which
has been chosen randomly from best. Lines 18-19 update
the Lagrangian multipliers according to a parameter.

5 The DGASAT Algorithm

It is a common knowledge that DLM performs better than
tabu search technique. In our implementation, we use the
GASAT and DLM algorithms as provided by their creators
while incorporating DLM in GASAT. Using the source
code of these algorithms as provided by their creators en-
sures that these algorithms are in the form as their creators
want them to be.

The DGASAT algorithm is the same as the GASAT
algorithm except that we replace the call to tabu search by
a call to DLM. The underline part (line 6) in figure 3 is the
new change over GASAT. The Call DLM function (figure
4) calls DLM after initializing λ and nflips to 1 and 0 re-
spectively and restricting the number of move to maxflips
before the DLM returns the answer. DLM returns the so-
lution if it finds it before reaching the moves to maxflips
or returns the last valuation if it could not find the solu-
tion. The remaining parts of GASAT and DGASAT are the
same.

1- p = CreatePopulation()
Improve each member in p by Tabu Search

2- while (no solution found and
the time is not over)

3- b = SelectBestIndividuals(p)
4- Choose x and y from b /*the parents*/
5- z = Crossover(x, y) /*z is the child*/
6- z = Call DLM(c, z, maxflip)

/*improve z by DLM */
7- if z is better than the worst mem. in b
8- add z to p
9- else discard z
10- If solution found return a solution
11-else return the best answer found

Figure 3: The DGASAT algorithm

Line 1 in GASAT and DGASAT is the same since
while experimenting with DGSAT, using tabu search for
the initial population shows better performance than using
DLM in this population.



1- Call DLM(c, z, maxflips)
/*c is the set of clauses, z is the current valuation*/
2- let s = z be the current valuation
3- λ = 1; nflips = 0
4- while (L(s, λ) > 0 and (nflips ≤ maxflips))
5- lines 5-20 from figure 2

Figure 4: The Call DLM function

6 Experiments

In our experiments, we use the source code of the GASAT
and DLM algorithms as provided by their creators. In ad-
dition, we consult the authors while tuning the parameters.
Luckily, the authors replied to all of our queries.

We used a suite of CSPs taken from [5]. We first trans-
form the problem instances into the satisfiability problems.
Table 1 shows these instances and the number of variables
and clauses in each instance. We use a PC with Pentium III
800 Mhz and 256 MB memory to get the results.

We tuned the parameters of the GASAT but we found
that the default parameters are the best as recommended by
their creators as well.

The default parameters of GASAT are:

• the initial size of the population: 30,

• the size of the best individuals: 15,

• the minimum hamming distance between two parents:
1,

• the length of the tabu list: (the number of variables in
the problem)/(20),

• the number of flips in the tabu search (maxflips):
1000 .

In DGASAT, we use the same parameter for DLM,
the number of search moves (maxflips), used in GASAT
for tabu search.

DLM distribution has five different sets of parameters.
We tuned these parameters for each set of the benchmark
instances. In this tuning, in each type of the benchmark
instances, we choose one instance randomly and we run
DGASAT for 20 runs. We then choose the best set of the
DLM parameters for this type of the benchmark instances.
Table 2 shows the PS, parameter sets, values for these in-
stances.

In order to make sure the fair comparisons between
GASAT and DGASAT, we use the same time function for
both algorithms. GASAT and DLM use the gcc compiler
under Linux or Unix platform. The time function we use
calculates the sum of the user time and the system time.

Tables 3 and 4 show the results of GASAT and
DGASAT respectively. We run each instance for 20 runs
and each run is terminated if it reaches a 10000 CPU time
without finding an answer. The information presented in
each table includes:

Instance vars Cls
N queens

10 queen 100 1,480
20 queen 400 12,560
50 queen 2,500 203,400
100 queen 10,000 1,646,800

Random permutation generation
pp50 2,475 159,138
pp60 3,568 279,305
pp70 4,869 456,129
pp80 6,356 660,659
pp90 8,059 938,837
pp100 9,953 1,265,776

Increasing permutation generation
ap10 121 6,71
ap20 441 4,641
ap30 961 14,911
ap40 1,681 34,481

Latin square
magic-10 1,000 9,100
magic-15 3,375 47,475
magic-20 8,000 152,400
magic-25 15,625 375,625
magic-30 27,000 783,900
magic-35 42,875 1,458,975

Hard graph-coloring
g125n-18c 2,250 70,163
g250n-15c 3,750 233,965
g125n-17c 2,125 66,272
g250n-29c 7,250 454,622

Tight random
rcsp-120-10-60-75 1,200 331,445
rcsp-130-10-60-75 1,300 389,258
rcsp-140-10-60-75 1,400 451,702
rcsp-150-10-60-75 1,500 518,762
rcsp-160-10-60-75 1,600 590,419
rcsp-170-10-60-75 1,700 666,795

Table 1. Benchmark of the satisfiability instances.

Instance PS
N queens 2
Random permutation generation 1
Increasing permutation generation 5
Latin square 5
Hard graph-coloring 4
Tight random 4

Table 2. The DLM parameter sets (PS) for the Benchmark
instances used in DGASAT.



• the success ratio of the 20 runs.

• the average time in seconds for the success runs of the
20 runs.

It is clear from tables 3 and 4 that the result of
DGASAT is far better than the result of GASAT in time and
in success ratio except in solving the graph coloring prob-
lems. DGASAT could solve instances that GASAT could
not, like the pp60 and pp70 in random permutation gener-
ation problems and magic20 and magic25 in latin square
problems.

7 Conclusion

In this paper, we have improved the GASAT algorithm
by replacing the tabu search local search algorithm by the
DLM algorithm. The resulted algorithm, DGASAT, is far
better than GASAT in solving most of the benchmark in-
stances. In addition, DGASAT could solve instances that
GASAT could not.
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