Chapter 9 Vibration Control

Chapter Outline

- 9.1 <u>Introduction</u>
- 9.2 <u>Vibration Nomograph and Vibration Criteria</u>
- 9.3 <u>Reduction of Vibration at the source</u>
- 9.7 <u>Control of Vibration</u>
- 9.8 <u>Control of Natural Frequencies</u>
- 9.9 Introduction of Damping

9.1 Introduction

G

9.1 Introduction

- Vibration leads to wear of machinery and discomfort of humans, thus we want to eliminate vibration
- Designer must compromise between acceptable amount of vibration and manufacturing cost
- We shall consider various techniques of vibration control in this chapter.

- Vibration nomograph displays the variations of displacement, velocity and acceleration amplitudes wrt frequency of vibration
- Harmonic motion: $x(t) = X \sin \omega t$
- Velocity: $v(t) = \dot{x}(t) = \omega X \cos \omega t = 2\pi f X \cos \omega t$
- Acceleration: $a(t) = \ddot{x}(t) = -\omega^2 X \sin \omega t = -4\pi^2 f^2 X \sin \omega t$
- Amplitude of velocity: $v_{\text{max}} = 2\pi f X$ (9.4)
- Amplitude of acceleration: $a_{\text{max}} = -4\pi^2 f^2 X = -2\pi f v_{\text{max}}$ (9.5)

• Taking log of Eq. 9.3 and Eq. 9.4:

$$\ln v_{\max} = \ln(2\pi f) + \ln X$$
$$\ln v_{\max} = -\ln a_{\max} - \ln(2\pi f)$$

- When X is constant, $\ln v_{max}$ varies linearly with $\ln(2\pi f)$
- When a_{max} is constant, ln v_{max} varies linearly with ln(2 πf)
- This is shown as a nomograph in the next slide.
- Every point on the nomograph denotes a specific sinusoidal vibration.

- Vibration severity of machinery is defined in terms of the root mean square (rms) value of vibration velocity. (ISO 2372)
- Vibration severity of whole building vibration (ISO DP 4866)
- Vibration limits for human (ISO 2631)

9.3 **Reduction of Vibration at the Source**

9.3 Reduction of Vibration at the Source

- Try to alter the source so that it produces less vibration
- E.g. balance rotating or reciprocating machines, use close tolerances or better surface finish
- Some sources cannot be eliminated e.g. turbulence, engine combustion instability, road roughness

9.7 Control of Vibration

9.7 Control of Vibration

- Some import methods to control vibrations:
 - > Control ω_n and avoid resonance under external excitations.
 - Introduce damping mechanism to prevent excessive response of system
 - Use vibration isolators to reduce transmission of excitation forces from one part of the machine to another
 - > Add an auxiliary mass neutralizer or vibration absorber to reduce response of system

9.8 Control of Natural Frequencies

9.8 Control of Natural Frequencies

- Resonance →Large displacements →large strains and stresses
 →failure of system
- Often the excitation frequency cannot be controlled.
- Hence must control natural frequency by varying mass *m* or stiffness *k* to avoid resonance.
- Practically mass cannot be changed easily.
- Hence we change stiffness k by altering the material or number and location of bearings (boundary conditions).

9.9 Introduction of Damping

9.9 Introduction of Damping

- System may be required to operate over a range of speed, hence cannot avoid resonance
- Can use material with high internal damping to control the response (viscoelastic materials).
- Can also use bolted or riveted joints to increase damping.
- Bolted or riveted joints permit slip between surfaces and dissipate more energy compared to welded joints.