Phys 761 Quantum Mechanics Problem Set # 7

Dr. Gassem Alzoubi The Hashemite University Department of Physics, Zarqa, Jordan

- 1. Consider a particle of mass m moving in a 1D harmonic oscillator potential $V(x) = \frac{1}{2}m\omega_0^2 x^2$. The particle is initially in the ground state $|0\rangle$. At t = 0, a perturbation, $H'(t) = 2\alpha x \cos(\omega t)$ where α is a real constant, is turned on, calculate the transition probability $P_{n0}(t)$ from the ground state $|0\rangle$ to the nth excited state $|n\rangle$ after a sufficiently long time (i.e. $t \to \infty$)
- 2. Repeat the last problem, but with a perturbation of the form $H'(t) = \frac{\alpha x}{\sqrt{\pi}\tau} e^{-t^2/\tau^2}$, where both α and τ are real constants. Consider all states.

Hint: $\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}$

3. Consider a particle of mass m moving in an infinite symmetric potential well given by

$$V(x) = \begin{cases} 0, & |x| \le a/2; \\ \infty, & \text{elsewhere.} \end{cases}$$

The eigenstates and eigenenergies are given by $u_n(x) = \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}(x-\frac{a}{2}))$ where n = 1, 2, 3, ... and $E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$. Notice that the potential is symmetric, hence there will be even and odd solutions. The particle is initially in the ground state of the well (n = 1). At t = 0, a small perturbation $H'(t) = x^2 e^{-t/\tau}$ is applied. Calculate the transition probabilities from the ground state to the first excited state (n = 2) and from the ground state to the second excited state (n = 3).

Hint:
$$\int_0^\infty x^n e^{-\alpha x} dx = \frac{n!}{\alpha^{n+1}}$$
 and $\cos A \cos B = 1/2[\cos(A-B) + \cos(A+B)]$

4. Consider a hydrogen atom initially in its ground state. At t = 0, the atom is placed in a time-dependent electric field pointing along the z-direction $E = E_0 e^{-t/\tau}$, where τ is a constant having the dimension of time. Calculate the probability that the atom will be found in the 2p state after a sufficiently long time (i.e. $t \to \infty$).

Hint: take $\psi_i = \psi_{100}$ and $\psi_f = \psi_{210}$, where ψ_{nlm} refers to the eigenstates of the hydrogen atom

Good Luck