Phys 741 Statistical Mechanics Problem Set # 7

Dr. Gassem Alzoubi

The Hashemite University Department of Physics, Zarqa, Jordan

- 1. Consider a 3D system of bosons, each of spin S, that is extremely relativistic with an energy spectrum $\varepsilon = cp$, where c is a constant.
 - (a) Calculate the density of states of the system
 - (b) Find the Bose-Einstein condensation temperature (the critical temperature T_c) at which the bosons start accumulating in the ground state, and show that the number of bosons in the excited states below T_c is given by $N_{ex} = N(\frac{T}{T_c})^3$
 - (c) Find an expressions for the total energy E of the system for both $T > T_c$ and $T \leq T_c$
 - (d) Find an expressions for the grand potential Ω of the system for both $T > T_c$ and $T \leq T_c$ and show that the pressure for $T > T_c$ is given by

$$P = \frac{N}{V} k_B T \frac{g_4(z)}{g_3(z)}$$

, and for $T \lesssim T_c$ is given by

$$P = \frac{N}{V} k_B T_c \left(\frac{T}{T_c}\right)^4 \frac{\zeta(4)}{\zeta(3)}$$

(e) Show that the entropy of the system for $T > T_c$ is given by

$$\frac{S}{Nk_B} = 4\frac{g_4(z)}{g_3(z)} - \ln z$$

, and for $T \lesssim T_c$ is given by

$$\frac{S}{Nk_B} = 4\left(\frac{T}{T_c}\right)^3 \frac{\zeta(4)}{\zeta(3)}$$

2. The Bose Einstein integral is defined as

$$g_n(z) = \frac{1}{\Gamma(n)} \int_0^\infty \frac{x^{n-1} dx}{z^{-1} e^x - 1}$$

(a) By expanding the integrand in powers of z, show that

$$g_n(z) = \sum_{j=1}^{\infty} \frac{z^j}{j^n}$$

and find $g_n(1)$

- (b) Show that for the case z = 1 ($\mu = 0$), the series in (a) converges for n > 1 and diverges for $n \le 1$.
- (c) Show that for the case z = 1 ($\mu = 0$),

$$\int_0^\infty \frac{x^n dx}{e^x - 1} = \Gamma(n+1) \,\,\zeta(n+1)$$

This problem will help you answer the next problem

- 3. Consider a system of an ideal Bose gas confined to a 2D plane of area A
 - (a) Calculate the density of states of the system
 - (b) Show that the system does not exhibit Bose Einstein condensation unless $T \to 0$
- 4. Consider a system of an ideal Bose gas confined to a 1D line of length L
 - (a) Calculate the density of states of the system
 - (b) Show that the system does not exhibit Bose Einstein condensation unless $T \to 0$
- 5. Consider Debye model in 2D
 - (a) Calculate the density of state of the system
 - (b) Calculate the total energy and the heat capacity at constant volume of the system for both high T limit $(k_B T \gg \hbar \omega)$ and low T limit $(k_B T \ll \hbar \omega)$

$Good\ Luck$