## Phys 741 Statistical Mechanics Problem Set # 5

Dr. Gassem Alzoubi

The Hashemite University Department of Physics, Zarqa, Jordan

1. The Hamiltonian of a 1D harmonic oscillator is given by

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2$$

- (a) Calculate the classical partition function, taking the phase space element to be  $dqdp/\tau$ , where  $\tau$  is a constant
- (b) Calculate the quantum partition function
- (c) Compare the quantum partition function in the limit  $(\beta \to 0)$  with the classical partition function and show that  $\tau = h$ , Planck's constant
- 2. Consider a system of N noninteracting spins, whose energies in a magnetic field B are given by  $\pm \mu_0 B$ . Ignoring translational motion  $p^2/2m$  of the particles
  - (a) Calculate the partition function  $Q_N$
  - (b) Calculate the average magnetic moment  $\langle M \rangle$
  - (c) Find the mean square fluctuations  $\langle M^2 \rangle \langle M \rangle^2$
- 3. Pathria 5.1
- 4. (a) Consider the density matrix  $\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  that represents a beam of electrons. Calculate  $\langle S_x \rangle$ ,  $\langle S_y \rangle$ , and  $\langle S_z \rangle$ , where  $S_i = \frac{\hbar}{2} \sigma_i$ ,  $\sigma_i$  are Pauli matrices. What is the physical interpretation of your results.
  - (b) Consider the density matrix  $\rho = \frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$  that represents a beam of electrons. Calculate  $\langle S_x \rangle$ ,  $\langle S_y \rangle$ , and  $\langle S_z \rangle$ . What is the physical interpretation of your results.
- 5. This problem is a generalization of problem 5. A beam of electrons was prepared to be polarized in the  $\vec{n}(\theta, \phi)$  direction. Let  $\chi_{n+}$  be the eigenstate of the spins that point up along  $\vec{n}$ , which is defined by

$$\chi_{n+} = \begin{pmatrix} e^{-i\phi/2}\cos(\frac{\theta}{2}) \\ e^{i\phi/2}\sin(\frac{\theta}{2}) \end{pmatrix}$$

- (a) Construct the density matrix that represents the electron beam in terms of the angles  $\theta$  and  $\phi$
- (b) Find the density matrices  $\rho_x$ ,  $\rho_y$ , and  $\rho_z$  that represents a beam of electrons polarized along the x, y, and z axes respectively.
- (c) To check your findings in part b), consider  $\rho_y$  and show that  $\langle S_y \rangle = \hbar/2$ ,  $\langle S_x \rangle = \langle S_z \rangle = 0$
- 6. Consider the density matrix of a harmonic oscillator that is given by  $\rho = A e^{-H/k_B T}$ , where A is a constant and  $H |n\rangle = E_n |n\rangle$ , n = 0, 1, 2, ... Clearly in these basis  $|n\rangle$ ,  $\rho$  is diagonal; i.e.  $\rho_{nn} = \langle n|\rho|n\rangle$ 
  - (a) Calculate the normalization constant A
  - (b) Find an expression for the density matrix  $\rho_{nn}$
  - (c) Using the density matrix obtained in (b), find an expression for  $\langle E \rangle$

 $Good\ Luck$