

The Hashemite University Faculty of Science Department of Physics

Department: Physics	
Year: 2015/2016	Semester: First
Year: 2015/2016	Semester: First

Course Information				
Course Title	Quantum Mechanics I 110102362			
Course Number	110102362			
Course Credits	Three credit hours			
Prerequisite	Modern physics (110102261), Mathematical physics 2 (110102282)			
Course Duration	14-weeks			
Instructor(s)	Dr. Gassem Alzoubi			
Instructor(s) Course Time	Dr. Gassem Alzoubi Sun, Tue, Thurs 12:00-1:00 pm			
Instructor(s) Course Time	Dr. Gassem Alzoubi Sun, Tue, Thurs 12:00-1:00 pm			
Instructor(s) Course Time Office Location	Dr. Gassem Alzoubi Sun, Tue, Thurs 12:00-1:00 pm Phys/room 107			
Instructor(s) Course Time Office Location Office Hours	Dr. Gassem Alzoubi Sun, Tue, Thurs 12:00-1:00 pm Phys/room 107 Sunday, Tuesday: 11-12 am			

Textbook			
Title	1. Quantum Physics		
Authors	S. Gasiorowicz		
Publisher	John Wiley & Sons		
Edition	3 rd Edition.		

References

- 1. Introduction to Quantum Mechanics, by B. H. Bransden and C.J. Joachain, Longman Scientific & Technical, 1990
- 2. Introductory Quantum Mechanics, by R. L. Liboff, 2nd edition, Addison Wesley, 1990.
- 3. Introduction to Quantum Mechanics, By D.J. Griffiths, Prentice Hall. Inc., 1995.
- 4. J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, 1994.
- 5. E. Merzbacher, Quantum Mechanics, 3rd. Edition, John Wiley and sons, 1998.
- 6. M. Alonso and H. Valk, Quantum Mechanics, Addison-Wesley, 1973.
- 7. L. Landau and E. Lifschits, *Quantum Mechanics*, Addison-Wesley, 1958.
- 8. C. C. Tannoudji, B. Diu, and F. Laloë, *Quantum Mechanics*, Two volumes, John Wiley and sons, 1977.

Course Description

Quantum mechanics is the branch of physics that describes the behavior of microscopic particles, such as electrons, protons, neutrons, etc. The motion of such particles cannot be described in the framework of classical physics using Newtonian mechanics. This course aims to introduce the basic quantum mechanical concepts to the student. These are somewhat unusual from the classical point of view and will describe microscopic phenomena. Thus, The students will have an opportunity to employ the mathematical and

physical concepts they have acquired in previous courses. They are expected to improve their logical and scientific thinking by expressing the physical concepts in terms of mathematical formalism. Finally, this course constitutes the foundation for future courses in physics such as atomic and molecular physics, nuclear physics, solid state physics, quantum optics and others.

Course Contents				
# of Lectures	Chapter	Description		
2	1	The Emergence of Quantum Physics		
4	2	Wave Particle Duality, Probability, and the Schrödinger		
		Equation		
5	3	Eigenvalues, Eigenctions, and Expansion Postulate		
5	4	One-Dimensional Potentials		
5	5	The General Structure of Wave Mechanics		
5	6	Operator Methods in Quantum Mechanics		
4	7	Angular Momentum		

Grading Plan:	1 st Exam	30 Points	TBA
	2nd Exam	30 Points	TBA
	Final exam	40 Points	TBA

General Notes: Attendance Policy: students are expected to attend every class and arrive on time in compliance with HU regulations. In case you find yourself in a situation that prevents you from attending class or exam, you have to inform your instructor. If you miss more than 6 classes for the (Sunday, Tuesday, and Thursday model) or 4 classes for the (Monday and Wednesday Model), you cannot pass the course. Makeup excuses will be accepted only for very limited justified cases, such as illness and emergencies.