

Hashemite University

Faculty of Natural Resources and Environment Department of earth and environmental sciences

Mineralogy (1201220) Chapter 7: Mineral Classification (1.Silicates)

Dr. Faten Al-Slaty First Semester 2015/2016

1. Silicates

Silicate Structures and Structural Formula

The radius ratio of Si⁺⁴ to O⁻² requires that Si⁺⁴ be coordinated by 4 O⁻² ions in tetrahedral coordination. In order to neutralize the +4 charge on the Si cation, one negative charge from each of the Oxygen ions will reach the Si cation.

Thus, each Oxygen will be left with a net charge of -1, resulting in a SiO_4^{-4} tetrahedral group that can be bonded to other cations. It is this SiO_4^{-4} tetrahedron that forms the basis of the silicate minerals.

1. Nesosilicates

If the corner oxygens are not shared with other SiO_4^{-4} tetrahedrons, each tetrahedron will be isolated.

The basic structural unit is then SiO₄-4.

Olivine is a good example: (Mg,Fe)₂SiO₄.

• Nesosilicates

- 1. Phenakite group
 - Phenakite Be₂SiO₄
 - Willemite Zn₂SiO₄
- 2. Olivine group
 - Forsterite Mg₂SiO₄
 - Fayalite Fe₂SiO₄
 - Tephroite Mn₂SiO₄
- 3. Garnet group
 - Pyrope Mg₃Al₂(SiO₄)₃
 - Almandine Fe₃Al₂(SiO₄)₃
 - Spessartine Mn₃Al₂(SiO₄)₃
 - Grossular Ca₃Al₂(SiO₄)₃
 - Andradite Ca₃Fe₂(SiO₄)₃
 - Uvarovite Ca₃Cr₂(SiO₄)₃
 - Hydrogrossular Ca₃Al₂Si₂O₈(SiO₄)_{3-m}(OH)_{4m}
- 4. Zircon group
 - Zircon ZrSiO₄
 - Thorite (Th,U)SiO₄

- 5. AI_2SiO_5 group
 - Andalusite Al₂SiO₅
 - Kyanite Al₂SiO₅
 - Sillimanite Al₂SiO₅
 - Dumortierite Al_{6.5-7}BO₃(SiO₄)₃(O,OH)₃
 - Topaz Al₂SiO₄(F,OH)₂
 - Staurolite Fe₂Al₉(SiO₄)₄(O,OH)₂
- 6. Humite group (Mg,Fe)₇(SiO₄)₃(F,OH)₂
 - Norbergite Mg₃(SiO₄)(F,OH)₂
 - Chondrodite Mg₅(SiO₄)₂(F,OH)₂
 - Humite $Mg_7(SiO_4)_3(F,OH)_2$
 - Clinohumite Mg₉(SiO₄)₄(F,OH)₂
- . Datolite CaBSiO₄(OH)
- . Titanite CaTiSiO5
- . Chloritoid (Fe,Mg,Mn)₂Al₄Si₂O₁₀(OH)₄
- . Mullite (aka Porcelainite) Al₆Si₂O₁₃

Garnet

$(Mg, Fe, Mn, Ca)_{3}(Fe^{3+}, Cr, Al)_{2}Si_{3}O_{12}$

Garnets are <u>isometric</u> minerals and thus isotropic in thin section, <u>metamorphic</u> mineral

Equigranular, euhderal to subhedral habit; poor cleavage

Optics: Colorless, isotropic, high relief.

Complex solid solution with the following end_member compositions and their characteristic colors:

Pyrope $Mg_3Al_2Si_3O_{12}$ - deep red to black Almandine $Fe_3Al_2Si_3O_{12}$ - deep brownish red Spessartine $Mn_3Al_2Si_3O_{12}$ - brownish red to black Grossular $Ca_3Al_2Si_3O_{12}$ - yellow_green to brown Andradite $Ca_3Fe_2Si_3O_{12}$ - variable_yellow, green, brow Uvarovite $Ca_3Cr_2Si_3O_{12}$ - emerald green

The Aluminosilicates Al₂SiO₅ Kyanite, Sillimanite, Andalusite

- In <u>metamorphic</u> rocks the Al₂SiO₅ <u>polymorphs</u> provide rather general estimates of the pressure and temperature of metamorphism, with
- Kyanite indicating relatively high pressure,

andalusite indicating low temperature and pressure, and

sillimanite indicating high temperature.

Kyanite – Vitreous bluish bladed tablets with single cleavage; $H_{\rm E}$ 5–7

Sillimanite – Vitreous brown to green clustered prisms with single cleavage.

Andalusite – Vitreous flesh_red, reddish brown square prisms; H: 7.5

Staurolite

Fe₂Al₉O₆(SiO₄)₄(O,OH)₂ Staurolite is a common mineral in <u>medium grade</u> <u>metamorphic</u> rocks, usually metamorphosed shales.

Moderate to high grade metamorphic mineral formed from Al_rich source rocks

Resinous to vitreous reddish-brown to brownish black 6sided prisms; commonly forms penetrating twins

Titanite CaTiO(SiO₄)

Common accessory mineral in plutonic igneous rocks like

granites, granodiorites, and syenites. It is also found as larger

crystals in metamorphic gneisses and chlorite bearing schists.

Resinous to adamantine, gray, brown, green, yellow or black lens crystals; distinct diamond_shaped cleavage; H: 5-5.5

Zircon is ZrSiO₄.

common accessory mineral in nearly all kinds of rocks, particularly the more siliceous igneous rocks, like granites, granodiorites, and syenites.

Zircon usually contains high amounts of radioactive elements like U and Th.

2. Sorosilicates

If one of the corner oxygens is shared with another tetrahedron.

there are two linked tetrahedrons isolated from all other tetrahedrons.

In this case, the basic structural unit is $Si_2O_7^{-6}$.

A good example of a sorosilicate is the mineral hemimorphite $-Zn_4Si_2O_7(OH_1)H_2O_1$.

• Sorosilicates

- Hemimorphite $(calamine) Zn_4(Si_2O_7)(OH)_2 \cdot H_2O$
- Lawsonite $CaAl_{2}(Si_2O_7)(OH_{2}) + H_2O$
- Ilvaite $CaFe_{2^{+}}^{2^{+}}Fe_{3^{+}}O(Si_{2}O_{7})(OH)$
- \bullet Epidote group $_(has both _(SiO_4)^{4-} and _(Si_2O_7)^{6-} groups _)$
 - Epidote $-Ca_{2}(AI,Fe_{3}O(SiO_{4})(Si_{2}O_{7})(OH))$
 - Zoisite $-Ca_2Al_3O(SiO_4)(Si_2O_7)(OH)$
 - Clinozoisite $-Ca_2Al_3O(SiO_4)(Si_2O_7)(OH)$
 - Tanzanite $-Ca_2Al_3O(SiO_4)(Si_2O_7)(OH)$
 - Allanite $Ca_{(}Ce, La, Y, Ca_{)}Al_{2(}Fe^{2+}, Fe^{3+})O_{(}SiO_{4})(Si_{2}O_{7})(OH_{)}$
 - Dollaseite₋₍Ce₎ CaCeMg₂AlSi₃O₁₁F₍OH₎

• Vesuvianite $(idocrase) - Ca_{10}(Mg, Fe)_2Al_4(SiO_4)_5(Si_2O_7)_2(OH)_4$

Epidote Group

- Common accessory and alteration mineral in <u>igneous</u> rocks and is a common phase in various grades of <u>metamorphic</u> rocks
- Zoisite Orthorhombic; Clinozoisite and Epidote Monoclinic
- all in low grade metamorphic rocks, particularly metamorphosed volcanic rocks and Fe_Al rich shales.
- Both Clinozoisite and epidote occur as alteration products of plagioclase and as veins in granitic rocks.

Physical Properties: prismatic vitreous crystals to very fine resinous massive granules; H: 6-7

Zoisite: Gray, greenish brown

Clinozoisite: Gray, pale yellow, pale green, colorless

Epidote: Pistachio green to yellow green,

Zoisite

3. Inosilicates (Single chain)

If two of the oxygens are shared in a way to make long single chains of linked SiO_4 tetrahedra. In this case the basic structural unit is $Si_2O_6^{-4}$

or SiO_3^{-2} .

This group is the basis for the pyroxene group of minerals, like the orthopyroxenes $(Mg,Fe)SiO_3$ or the clinopyroxenes $Ca(Mg,Fe)Si_2O_6$.

• Inosilicates

Single chain inosilicates

- 1. Pyroxene group
 - Enstatite orthoferrosilite series
 - Enstatite MgSiO₃
 - Ferrosilite FeSiO₃
 - Pigeonite Ca_{0.25}(Mg,Fe)_{1.75}Si₂O₆
 - Diopside hedenbergite series
 - Diopside CaMgSi₂O₆
 - Hedenbergite CaFeSi₂O₆
 - Augite (Ca,Na)(Mg,Fe,AI)(Si,AI)₂O₆
 - Sodium pyroxene series
 - Jadeite NaAlSi₂O₆
 - Aegirine (Acmite) NaFe³⁺Si₂O₆
 - Spodumene LiAlSi₂O₆
- 2. Pyroxenoid group
 - Wollastonite CaSiO₃
 - Rhodonite MnSiO₃
 - Pectolite NaCa₂(Si₃O₈)(OH)

Pyroxene group

The pyroxenes can be divided into several groups based on chemistry and crystallography:

Orthorhombic Pyroxenes (Orthopyroxenes – Opx): these consist of a range of compositions between enstatite – MgSiO, and ferrosilite – FeSiO,

2. Monoclinic Pyroxenes (Clinopyroxenes – Cpx): the Diopside– Hedenbergite series – Diopside (CaMgSi₂O₆) – Ferrohedenbergite (CaFeSi₂O₆)

The Sodic Pyroxenes – Jadeite $(NaAlSi_2O_6)$ and Aegerine $(NaFe^{+3}Si_2O_6)$

3. Inosilicates (Double chain)

If two chains are linked together so that each tetrahedral group shares 3 of its oxygens, we can from double chains, with the basic structural group being $Si_4O_{11}^{-6}$.

The amphibole group of minerals are double chain silicates, for example the tremolite – ferroactinolite series– $Ca_{2}(Mg,Fe)_{5}Si_{8}O_{22}(OH)_{2}$.

Double chain inosilicates

1. Amphibole group

- Anthophyllite $-(Mg,Fe)_7Si_8O_{22}(OH)_2$
- Cumingtonite series
 - Cummingtonite $-Fe_2Mg_5Si_8O_{22}(OH)_2$
 - Grunerite $-Fe_7Si_8O_{22}(OH)_2$
- Tremolite series
 - Tremolite $-Ca_2Mg_5Si_8O_{22}(OH)_2$
 - Actinolite $-Ca_{2}(Mg,Fe)_{5}Si_{8}O_{22}(OH)_{2}$
- Hornblende $-(Ca, Na)_{2-3}(Mg, Fe, Al)_{5}Si_{6}(Al, Si)_{2}O_{22}(OH)_{2}$
- Sodium amphibole group
 - Glaucophane $Na_2Mg_3Al_2Si_8O_{22}(OH)_2$
 - Riebeckite (asbestos) $Na_2Fe^{2+}_3Fe^{3+}_2Si_8O_{22}(OH)_2$
 - Arfvedsonite $Na_{3}(Fe,Mg)_{4}FeSi_{8}O_{22}(OH)_{2}$

Amphiboles

Hornblende is the most common amphibole and has more in common with the **Tremolite** – Ferroactinolite series.

The sodic amphiboles have the following formulae: Glaucophane – $Na_2Mg_3Al_2Si_8O_{22}(OH)_2$ Riebeckite – $Na_2Fe_3^{+2}Fe_2^{+3}Si_8O_{22}(OH)_2$ Arfvedsonite – $NaNa_2Fe_4^{+2}Fe^{+3}Si_8O_{22}(OH)_2$

All of the amphiboles except Anthophyllite are monoclinic ²¹

4. Cyclosilicates (Ring Silicates)

If two of the oxygens are shared and the structure is arranged in a ring.

Six membered ring forming the structural group $Si_6O_{18}^{-12}$. Three membered rings, $Si_3O_9^{-6}$, four membered rings, $Si_4O_{12}^{-8}$, and five membered rings $Si_5O_{15}^{-10}$ are also possible.

A good example of a cyclosilicate is the mineral Beryl – $Be_3Al_2Si_6O_{18}$.

- Cyclosilicates
- 3_memberring
 - Benitoite $BaTi_{(}Si_{3}O_{9})$
 - $\bullet 6$ -member ring
 - Axinite $-(Ca, Fe, Mn)_{3}Al_{2}(BO_{3})(Si_{4}O_{12})(OH)$
 - Beryl / Emerald $-Be_3Al_{2}(Si_6O_{18})$
 - Cordierite $-(Mg,Fe)_2Al_3(Si_5AlO_{18})$
 - Tourmaline $-(Na,Ca)(Al,Li,Mg)_{3-}$
 - $(AI, Fe, Mn)_{6}(Si_{6}O_{18}(BO_{3})_{3}(OH)_{4})$

Cyclosilicates

The most common minerals based on this structure are **Beryl, Cordierite, and Tourmaline**.

Beryl forms different gemstones depending on color

Tourmaline is a common mineral in pegmatites $(SiO_2 - rich igneous rocks with large grain size), where it is associated with quartz and alkali feldspar.$

5. Phyllosilicates (Sheet Silicates)

If 3 of the oxygens from each tetrahedral group are shared such that an infinite sheet of SiO4 tetrahedra are shared.

In this case the basic structural group is $Si_2O_5^{-2}$.

The micas, clay minerals, chlorite, talc, and serpentine minerals are all based on this structure.

A good example is biotite – K(Mg,Fe)3(AlSi3)O10(OH)2.

Phylosilicates

- 1. Serpentine group
 - Antigorite Mg₃Si₂O₅(OH)₄
 - Chrysotile Mg₃Si₂O₅(OH)₄
 - Lizardite Mg₃Si₂O₅(OH)₄
- 2. Clay mineral group
 - Halloysite Al₂Si₂O₅(OH)₄
 - Kaolinite Al₂Si₂O₅(OH)₄
 - Illite (K,H₃O)(AI,Mg,Fe)₂(Si,AI)₄O₁₀[(OH)₂,(H₂O)]
 - Montmorillonite $(Na,Ca)_{0.33}(AI,Mg)_2Si_4O_{10}(OH)_2 \cdot nH_2O$
 - Vermiculite (MgFe,AI)₃(AI,Si)₄O₁₀(OH)₂·4H₂O
 - Talc Mg₃Si₄O₁₀(OH)₂
 - Palygorskite (Mg,AI)₂Si₄O₁₀(OH)·4(H₂O)
- 3. Mica group
 - Biotite K(Mg,Fe)₃(AlSi₃)O₁₀(OH)₂
 - Muscovite KAI₂(AISi₃)O₁₀(OH)₂
 - Phlogopite KMg₃(AlSi₃)O₁₀(OH)₂
 - Lepidolite K(Li,Al)₂₋₃(AlSi₃)O₁₀(OH)₂
 - Margarite CaAl₂(Al₂Si₂)O₁₀(OH)₂
 - Glauconite (K,Na)(AI,Mg,Fe)₂(Si,AI)₄O₁₀(OH)₂
- 4. Chlorite group
 - Chlorite $(Mg,Fe)_3(Si,AI)_4O_{10}(OH)_2 \cdot (Mg,Fe)_3(OH)_6$

Serpentine group of minerals has the formula – $Mg_3Si_2O_5(OH_{)_4}$. Three varieties of serpentine are known. Antigorite and Lizardite are usually massive and fine grained, while Chrisotile is fibrous.

Mica Group

Muscovite, Paragonite, and Margarite are the <u>white</u> <u>micas</u>, and

Biotite and Clintonite (Xanthophyllite) the <u>black</u> mica.

Chlorite group has a structure that consists of phlogopite T_-O_-T layers. common mineral in low grade <u>metamorphic</u> rocks

Clay minerals: most common products of <u>chemical</u> <u>weathering</u>, and thus are the main constituents of the fine_grained sedimentary rocks called mudrocks (including mudstones, claystones, and shales).

the clay minerals can be divided in to three main classes:

1. The kandites based on a structure similar to Kaolinite

2. The smectites based on a structure similar to Pyrophyllite

3. The illites based on a structure similar to Muscovite²⁸

Structure of Phyllosilicates

- Octahedral layer
 - Layer of octahedral coordinated
 - magnesium (brucite layer) or
 - Aluminum (gibbsite layer)
 - Makes up the other basic structural unit

Kaolinite: $Al_2Si_2O_5(OH)_4$ 1:1 tetrahedral – octahedral sheets

The Major Clay Mineral Groups

- Kaolinite group:
 - -1: 1 TO clay minerals
- Mica (illite) group:
 - 2:1 TOT clay minerals
 - Expandible clays:
 - Smectite_
 - montmorillonite complex 2:1 clay minerals
- Chlorite
 - Fe_ and Mg_rich TOT clays

Kaolinite (or Antigorite)

6. Tectosilicates (Framework Silicates)

If all of the corner oxygens are shared with another SiO_4 tetrahedron, then a framework structure develops.

The basic structural group then becomes **SiO**₂. The minerals quartz, cristobalite, and tridymite all are based on this structure.

If some of the Si⁴ ions are replaced by Al³ then, the feldspar and feldspathoid minerals are formed.

• Tectosilicates

- 1. Quartz group
 - Quartz SiO₂
 - Tridymite SiO₂
 - Cristobalite SiO₂
 - Coesite SiO₂
- 2. Feldspar family
 - a. Alkali-feldspars (potassium-feldspars)
 - •Microcline KAISi₃O₈
 - •Orthoclase KAISi₃O₈
 - •Anorthoclase (Na,K)AlSi₃O₈
 - •Sanidine KAISi₃O₈
 - •Albite NaAlSi₃O₈
 - b. Plagioclase feldspars
 - •Albite NaAlSi₃O₈
 - •Oligoclase (Na,Ca)(Si,Al)₄O₈ (Na:Ca 4:1)
 - •Andesine (Na,Ca)(Si,Al)₄O₈ (Na:Ca 3:2)
 - •Labradorite (Na,Ca)(Si,Al)₄O₈ (Na:Ca 2:3)
 - •Bytownite (Na,Ca)(Si,Al)₄O₈ (Na:Ca 1:4)
 - Anorthite CaAl₂Si₂O₈

Tectosilicates

- 3. Feldspathoid family
 - Nosean $Na_8AI_6Si_6O_{24}(SO_4)$
 - Cancrinite Na₆Ca₂(CO₃,Al₆Si₆O₂₄).2H₂O
 - Leucite KAISi₂O₆
 - Nepheline (Na,K)AlSiO₄
 - Sodalite Na₈(AlSiO₄)₆Cl₂
 Hauyne (Na,Ca)₄₋₈Al₆Si₆(O,S)24(SO₄,Cl)₁₋₂
 - Lazurite (Na,Ca)₈(AISiO₄)₆(SO₄,S,CI)₂
 - Petalite LiAlSi₄O₁₀
 - Scapolite group
 - Marialite Na₄(AlSi₃O₈)₃(Cl₂,CO₃,SO₄)
 - Meionite $Ca_4(Al_2Si_2O_8)_3(Cl_2CO_3,SO_4)$
 - Analcime NaAlSi₂O₆•H₂O
- 4. Zeolite family
 - Natrolite Na₂Al₂Si₃O₁₀•2H₂O
 - Chabazite CaAl₂Si₄O₁₂•6H₂O
 - Heulandite CaAl₂Si₇O₁₈•6H₂O
 - Stilbite NaCa₂Al₅Si₁₃O₃₆•17H₂O
 - Scolecite CaAl₂Si₃O₁₀.3H₂O
 - Mordenite (Ca,Na₂,K₂)Al₂Si₁₀O₂₄•7H₂O

SiO₂ Minerals

Stishovite and Coesite are high pressure forms of SiO₂

At low pressure with decreasing temperature, SiO₂ polymorphs change from high Cristobalite – Low Cristobalite – High Tridymite – Low Tridymite – High Quartz – Low Quartz.

Opal is amorphous, and thus a mineraloid.

Feldspars The feldspars are the most common minerals in the Earths crust. 34

They consist of three end-members:

KAlSi₃O₈ – Orthoclase (or), NaAlSi₃O₈ – Albite (ab), and CaAl₂Si₂O₈ – Anorthite (an)

Feldspathoids

The feldspathoid group of minerals are SiO₂ poor, alkali rich minerals that occur in low SiO₂, high Na₂O – K₂O igneous rocks. The main feldspathoids are Nepheline (Na,K)AlSiO₄, Kalsilite KAlSi₂O₆, and Leucite KAlSi₂O₆.

<u>General Formula for Silicates</u> XmYn(ZpOq)Wr

where **X** represents an 8 to 12 fold coordination site for large cations like K^+ , Rb^+ , Ba^{+2} , Na^+ , and Ca^{+2} .

Y represents a 6-fold (octahedral) site for intermediate sized cations like AI+3, Mg+2, Fe+2, Fe+3, Mn+2, and Ti+4.

Z represents the tetrahedral site containing Si^{+4} , and AI^{+3} . O is oxygen, and W is a hyrdoxyl (OH^{-1}) site into which can substitute large anions like F^{-1} or CI^{-1} .

The subscripts m, n, r, p, and q and are chosen Site to maintain charge balance. This is summarized in the table shown here. In this table note that there is very little substitution that takes place between ions that Y enter the X, Y, and Z sites. The exceptions are mainly substitution of Al⁺³ for Si⁺⁴, which is noted in Х the Table, and whether the X site is large enough to accept the largest cations like K^{+1} , Ba^{+2} , or Rb^{+1} .

2. Non-Silicate Minerals

- -Oxides -Sulfides -Sulfates -Native Elements -Carbonates -Halides
- –Phosphates
- Many nonsilicate minerals have economic value and deposited as ore.
- Examples
 - -Hematite (oxide mined for iron ore)
 - -Halite (halide mined for salt)
 - -Sphalerite (sulfide mined for zinc ore)
 - -Native Copper (native element mined for copper)

Oxide Minerals: have oxygen (O) as anion. They include magnetite, hematite, spinel, chromite, chrysoberyl, cuprite, corundum, ilmenite, rutile, uranitite and others.

- Hydroxides: have OH as anions. They make a relatively small group, which includes three groups of minerals: limonites (goethite, lepidocrocite), bauxites (gibbsite, diaspore) and (manganese oxide and some hydroxide minerals).
- Sulfate Minerals: have SO4 as anion. They include gypsum, anhydrite, barite, and others.

 Sulfides: have S as anion, and the group includes sphalerite, galena, pyrite, chalcopyrite, arsenopyrite, pyrrhotite, cinnabar, marcasite, molybdenite, bornite, chalcosite, covellite and others.

- Native elements: include gold, silver, copper, nickel, zinc, lead, sulfur, diamond, mercury, iron, platinum, arsenic, bismuth, antimony and others
- Carbonates: have CO3 as anion. They are easy to identify because they react to hydrochloric acid include calcite, magnesite, siderite, rhodocrosite, dolomite, aragonite, azurite and malachite.

- Halide Minerals : have one of the halogens (fluorine, chlorine, bromine, iodine and astatine) as anions. The group includes halite (rock salt), fluorite, sylvite, atacamite,
- Phosphate Minerals: have PO4 as aniones. The group includes apatite, monazite, arsenite, turquoise, vanadite and others.
- Mineraloids Group (Non-Crystalline Minerals)

Opal

. . .

Pearl contain the mineral "calcium carbonate" but the structure is bonded together by organic materials.

Obsidian is not a "crystal" but is instead amorphous_glass. **Amber** is a heterogeneous composite with a "gem_like" appearance, but consists of resinous bodies that are soluble in alcohol. Accessory minerals: a constituent mineral present in small quantity and not taken into account in identifying a rock.

The oxide minerals are very common and usually occur as accessory minerals in all kinds of rocks, include: **Corundum** $_{-}Al_{2}O_{3}$

Corundum is hexagonal and occurs in Al_rich igneous and metamorphic rocks.

Spinel - MgAl₂O₄

isometric mineral that occurs ultrabasic rocks like peridotite, and in many low silica ignoeous rocks like basalts. It is also found in Al_rich contact metamorphic rocks.

Chromite $- Fe^{+2}Cr_2O_4$

Chromite is isometric, and usually opaque in thin section. It is found in low silica, Mg_rich igneous rocks, usually associated with Olivine as small inclusions.

Magnetite $-Fe_3O_4$

found as an accessory mineral in all rock types. It is isometric and commonly crystallizes with an octahedral habit.

Hematite $-Fe_2O_3$

Hematite is one of the most important ores of Fe. It is more oxidized than Magnetite, and thus forms as an alteration product of magnetite. Hematite is hexagonal as massive habit.

found as a common accessory mineral in a wide range of igneous volcanic and plutonic rocks, as well as metamorphic and clastic sedimentary rocks.

Apatite Ca5(PO4)3(OH,F)

Ilmenite – FeTiO₃

Apatite is another very common accessory mineral in igneous rocks and many metamorphic rocks.

Carbonates

an important group of minerals near the Earths surface. Carbonate minerals make up the bulk of limestones and dolostones in clastic sedimentary rocks.

There are three structural types of carbonates:

Calcite Group	Aragonite Group	Dolomite Group	
Calcite CaCO ₃	Aragonite CaCO ₃	Dolomite CaMg(CO ₃) ₂	
Magnesite MgCO ₃	Witherite BaCO ₃	Ankerite CaFe(CO ₃) ₂	
Siderite FeCO ₃	Strontianite SrCO ₃		
Rhodochrosite MnCO ₃	Cerussite PbCO ₃		
Smithsonite ZnCO ₃			

In addition, there are the hydroxyl Cu carbonates – Malachite, $Cu_2CO_3(OH_2)_2$ and $Azurite Cu_3(CO_3)_2(OH_2)_2$.

Mineral Weathering

Geologists recognize two categories of weathering processes

1. **Physical Weathering** – disintegration of rocks and minerals by a physical or **mechanical** process.

2. Chemical Weathering – chemical alteration or decomposition of rocks and minerals.

Although we separate these processes, both work together to break down rocks and minerals to smaller fragments or to minerals more stable near the Earths surface.

Weathering: decomposition and disintegration of rock

Product of weathering is <u>regolith or soil</u>

Regolith or soil that is transported is called <u>sediment</u>

Movement of sediment is called <u>erosion</u>

Physical Weathering

Physical weathering takes place by a variety of processes. Among them are:

 Development of Joints – Joints are regularly spaced fractures or cracks in rocks that show no offset across the fracture (fractures that show an offset are called faults).

– Joints form as a result of **expansion** due to cooling or relief of pressure as overlying rocks are removed by erosion.

- Crystal Growth As water percolates through fractures and pore spaces it may contain ions that precipitate to form crystals. As these crystals grow they may exert an outward force that can expand or weaken rocks.
- Heat daily heating and cooling of rocks
- Plant and Animal Activities
 - Plant roots can extend into fractures and grow, causing expansion of the fracture.

– Animals burrowing or moving through cracks can break rock.

• Frost Wedging – Upon freezing, there is an increase in the volume of the water.

As the water freezes it expands and exerts a force on its surroundings.

Frost wedging is more prevalent at high altitudes where there may be many freeze_thaw cycles.

Mechanical Weathering

Copyright © 2005 Pearson Prentice Hall, Inc.

Copyright @ 2005 Pearson Prentice Hall, Inc.

Decompression causes jointing

Frost wedging Alternate heating and cooling

Chemical Weathering

when rocks arrive near the surface as a result of uplift and erosion, they encounter conditions very different from those under which they originally formed:

• Lower Temperature (Near the surface T = -20 to $50^{\circ}C_{0}$

Lower Pressure (Near the surface P = 1 to several hundred atmospheres)

 Higher free water (there is a lot of liquid water near the surface, compared with deep in the Earth) Higher free oxygen (although O2 is the most abundant element in the crust, most of it is tied up in silicate and oxide minerals – at the surface there is much more free oxygen, particularly in the atmosphere).

Because of these differing conditions, minerals in rocks react with their new environment to produce new minerals that are stable under conditions near the surface. Minerals that are stable under P, T, H₂O, and O₂ conditions near the surface are, in order of most stable to:

- Iron oxides, Aluminum oxides such as hematite Fe₂O₃, an gibbsite Al₍OH₎3.
- Quartz*
- Clay Minerals
- Muscovite*
- Alkali Feldspar*
- Biotite*
- Amphiboles*
- Pyroxenes*
- Ca_rich plagioclase*
- Olivine*

Controls on rates of weathering

Copyright © 2005 Pearson Prentice Hall, Inc.

The main agent responsible for chemical weathering reactions is water and weak acids formed in water.

An acid is solution that has abundant free H+ ions.

The most common weak acid that occurs in surface waters is carbonic acid.

Carbonic acid is produced in rainwater by reaction of the water with carbon dioxide (CO_2) gas in the atmosphere.

Types of Chemical Weathering Reactions

- Oxidation Since free oxygen (O2) is more common near the Earths surface, it may react with minerals to change the oxidation state of an ion.
- This is more common in Fe (iron) bearing minerals, since Fe can have several oxidation states, Fe, Fe⁺², Fe +3.
 - 3Fe⁺²SiO₃ + 1/2O₂ → Fe₃O₄ + 3SiO₂ Pyroxene Oxygen Magnetite Quartz

Dissolution – all of the mineral is completely dissolved by the water.

$$CaCO_3 + H_2CO_3 \longrightarrow Ca^{2+} + 2(HCO_3)^-$$

Calcite Carbonic Acid Calcium ion Bicarbonate ion

Oxidation

Oxidation can affect any iron bearing mineral, for example, ferromagnesian silicates which react to form hematite and limonite

Iron pyroxene dissolves to release silica and ferrous iron to solution

Ferrous iron is oxidized by oxygen molecules to form ferric iron

Ferric iron combines with water to precipitate a solid, iron oxide, from solution

Copyright @ 2005 Pearson Prentice Hall, Inc.

Oxidation of pyrite and other sulfide minerals forms sulfuric acid which acidifies surface water and rain

Pyrite + oxygen + water = sulfuric acid + goethite (iron sulfide) (iron oxide)

Copyright © 2008 Pearson Prentice Hall, Inc.

Hydrolysis – H+ or OH- replaces an ion in the mineral:

- Leaching ions are removed by dissolution into water. In the example above we say that the K+ ion was leached. $2FeO \cdot OH \longrightarrow Fe_2O_3 + H_2O$ Goethite Hematite water
- Dehydration removal of H2O or OH- ion from a mineral.

Hydrolysis

63

Products of weathering

TABLE 6.1	Products of Weathering		
Mineral	Residual Products	Material in Solution	
Quartz Feldspars Amphibole (hornblende)	Quartz grains Clay minerals Limonite Hematite	Silica Silica K ⁺ , Na ⁺ , Ca ²⁺ Silica Ca ²⁺ , Mg ²⁺	
Olivine	Limonite Hematite	Silica Mg ²⁺	

Copyright © 2005 Pearson Prentice Hall, Inc.

Weathering of Common Rocks

Rock	Primary Minerals	Residual Minerals*	Leached Ions
Granite	Feldspars	Clay Minerals	Na ⁺ , K ⁺
	Micas	Clay Minerals	K+
	Quartz	Quartz	
	Fe-Mg Minerals	Clay Minerals + Hematite + Goethite	Mg ⁺²
Basalt	Feldspars	Clay Minerals	Na ⁺ , Ca ⁺²
	Fe-Mg Minerals	Clay Minerals	Mg ⁺²
	Magnetite	Hematite, Goethite	
Limestone	Calcite	None	Ca^{+2}, CO_3^{-2}