The Hashemite University	Real Analysis I, Second Exam	December 1, 2013
1^{st} semester 2013/2014 Student Name:		Time: 55 minutes Serial Number:

** Show your work in details, no credit will be given for answers without details.

- 1. (15 points) Determine whether these statements are true or false, and justify why a statement is false.
 - 1. $(T \ F)$ If all of the subsequences of a sequence $\{x_n\}$ converge, then the sequence $\{x_n\}$ converges.
 - 2. (T F) Any bounded sequence converges.
 - 3. (T F) If a sequence $\{x_n\}$ diverges then every subsequence of $\{x_n\}$ diverges.
 - 4. $(T \ F)$ If a sequence $\{x_n\} \subseteq \mathbb{R}$ has an unbounded subsequence, then $\{x_n\}$ is unbounded.
 - 5. (T F) Let X' and X" be subsequences of $X = \{x_n\}$, such that X' converges to x' and X" converges to x". If x' = x'', then the sequence X converges to the common value.
 - 6. (T F) If $X = \{x_n\}$ is a sequence, then it contains a subsequence which is monotone.
 - 7. (*T F*) If $\{x_n\}$ is decreasing and bounded below by M > 0, then $\lim_{n\to\infty} x_n = L$, for some L and $L \leq M$.
 - 8. $(T \ F)$ If $\{x_n\}$ converges to 0, then it is not necessary that the sequence $\{(-1)^n x_n\}$ converge to 0.
 - 9. (T F) Every Cauchy sequence is monotone.
 - 10. $(T \ F)$ Let $f : \mathbb{R} \to \mathbb{R}$ be a function, and $\{x_n\}, \{y_n\}$ be two sequences each converges to the real number c. If $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} f(y_n) = L$, then $\lim_{x\to c} f(x)$ exist.

2. (5 points) Prove that "If $\{x_n\}$ is a Cauchy sequence then it is bounded". (Don't use any other theorems in your proof)

3. (5 points) Let $\{x_n\}, \{y_n\}$ be two sequences of real numbers, such that $\lim_{n\to\infty} x_n = x$. If $\forall \epsilon > 0, \exists K \in \mathbb{N}$ such that $|x_n - y_n| < \epsilon$, for all $n \ge K$, show that $\{y_n\}$ converges.

4. (5 points Bonus) Give an example of a sequence $\{x_n\} \subseteq \mathbb{R}$ that is not a Cauchy sequence, but that satisfies $|x_{n+1} - x_n| < \epsilon$ for all $n \in \mathbb{N}$ and all $\epsilon > 0$. Justify your answer.