* Show your work in details, no credit will be given for *answers* without details.

1. Use the ϵ - definition of the limit to prove that (show all details)

(a)
$$\lim_{n \to \infty} \frac{\sqrt{n}}{5n+3} = 0.$$

(b)
$$\lim_{n \to \infty} \frac{n^2}{n!} = 0.$$

- 2. State and prove the following theorems:
 - (a) Monotone Convergence Theorem for the bounded increasing sequences of real numbers.
 - (b) Boundedness Theorem (for functions).
 - (c) Uniform Continuity Theorem.
 - (d) Sequential Criterion for Limits of functions.
 - (e) ...
 - (f) ...
- 3. Give an example of a function $f : [0,1] \to \mathbb{R}$ that is discontinuous at every point of [0,1] but such that |f| is continuous on [0,1].
- 4. Show that the function $f(x) = \frac{1}{x}$ is uniformly continuous on the set $A := [a, \infty)$, where a > 0.
- 5. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is nowhere continuous. Justify your answer in details.
- 6. Show that if a function $f : \mathbb{R} \to \mathbb{R}$ is Lipschitz on \mathbb{R} , then f is continuous at every point of $c \in \mathbb{R}$.
- 7. Prove that if a sequence $X = \{x_n\}_{n \in \mathbb{N}} \subset \mathbb{R}$ converges to a real number x, then any subsequence $X' = \{x_{n_k}\}$ of X also converges to x.
- 8. True or Faulse:
 - (a) If $f: A \to \mathbb{R}$ is continuous function on $A \subset \mathbb{R}$, then f is uniformly continuous on A.
 - (b) Any Lipschitz continuous function is uniformly continuous.
 - (c) Any bounded sequence converges.
 - (d) Any convergent sequence in \mathbb{R} is Cauchy sequence in \mathbb{R} .
 - (e) ...
 - (f) ...

9.

10.

11.