

The Hashemite University Faculty of Science Department of Mathematics

Course Description

Year : 2013/2014

Second Semester

	Course Information	
Course Title	Complex Analysis	
Course Number	101413	
Course Credits	3 Hours	
Course Time& section	Section 1 (Monday, Wednsday 11:00: – 12:30)	
Course Duration	One semester	
Prerequisite(s)	101211	
Instructor	Dr. Sa'ud AL-Sa'di	
Office Location	IT, first Floor, office number 146	
Office Phone		
Office Hours	10:00-11:00 (Sunday, Tuesday, Thursday)	
E- mail	saud@hu.edu.jo	
Course Web Site:	http://www.staff.hu.edu.jo/saud	
	Text Book	
Title	Complex Variables and Applications	
Author	James W. Brown and Ruel V. Churchill	
Publisher	McGraw-Hill	
Year	2004	
Edition	7 th	
References(s)	1. Fundamentals of Complex Analysis for Mathematics,	
	Science, and Engineering by Saff and D. Snider.	
	2. Complex Variables, by Silverman, H.	
Grading plan		
First Exam	20 %	
Second Exam	20 %	
Other Activities	10%	
Final Exam	50 %	

Course Objectives

To study complex valued functions, their limits; continuity, and analyticity. To study the integrals of complex valued functions, sequences and power series of complex functions and the application of Residue theorem in evaluating real integrals of certain types.

Week	Section	Topics
		Chapter (1): Complex Numbers
	1	Sums and Products
1	2	Basic Algebraic Properties
	3	Further Properties
	4	Moduli
	5	Complex Conjugates
	6	Exponential Form
2	7	Products and Quotients in exponential Form
	8	Roots of Complex Numbers
	9	Examples
	10	Regions in the Complex Plane
		Chapter (2): Analytic functions
	11	Functions of a Complex Variable
	12	Mappings
3	13	Mappings by the Exponential Function
	14	Limits
	15	Theorem on Limits
	16	Limits Involving the Point at Infinity
	17	Continuity
	18	Derivatives
	19	Differentiation Formulas
	20	Cauchy-Riemann Equations
4	21	Sufficient Conditions For Differentiability
	22	Polar Coordinates
	23	Analytic Functions
	24	Examples
	25	Harmonic Functions
		Chapter (3): Elementary Functions
	28	The Exponential Function
5	29	The Logarithmic Function
	30	Branches And Derivatives of Logarithms
	31	Some Identities Involving Logarithms
	32	Complex Exponents
6	33	Trigonometric Functions and Its Branches
	34	Hyperbolic Functions
	35	Inverse Trigonometric and Hyperbolic Functions
		Chapter (4): Integrals
	36	Derivatives of Functions w(t)
	37	Definite Integrals of Functions w(t)
7	38	Contours
	39	Contour Integrals
	40	Examples
	41	Upper Bounds For Moduli of Contour Integrals

	42	Antiderivatives
	43	Examples
8	44	Cauchy - Goursat Theorem
U	45	Proof of the Theorem
	46	Simply and Multiply Connected Domains
	40	Cauchy Integral Formula
	48	Derivatives of Analytic Functions
	49	Liouville's Theorem and the Fundamental Theorem of Algebra
	50	Maximum Moduli of Principle
	50	Muximum friodum of Trincipie
		Chapter (5): Series
	51	Convergence of Sequences
	52	Convergence of Series
9	53	Taylor Series
	54	Examples
	55	Laurent Series
	56	Examples
	57	Absolute and Uniform Convergence of Power Series
10	58	Continuity of Sums of Power Series
	59	Integration and Differentiation of Power Series
	60	Uniqueness of Series Representations
	61	Multiplication and Division of Power
		Charter ((): Desidues and Peles
	62	Chapter (6): Residues and Poles Residues
	63	
11	64	Cauchy's Residue Theorem Using A single Residue
11	65	The Three Types of Isolated Singularities Points
	05	The Three Types of Isolated Singularities Folins
12	66	Residues at Poles
	67	Examples
	68	Zeros of Analytic Functions
	69	Zero's And Poles
	70	Behavior of f Near Isolated Singular Points
	71	Chapter (7): Application of Residues
	71 72	Evaluation of Improper Integrals Involving Trigonometric Functions;
		Examples
12	73	Improper Integrals From Fourier Analysis
13	74	Jordan's Lemma
	75	Indented Paths
	76	An Indentation Around a Branch Cut
	77	Integration Along a Branch Cut
1	78	Definite Integrals Involving Sines and Cosines
	00	D and the factor of the second
	80	Rouche's Theorem