## Outline:

- Atomic Densities
  - Linear Density
  - Planar Density
- Single- vs poly- crystalline materials
- X-ray Diffraction
- Example
- · Polymorphism and Allotropy

# **Atomic Densities**

### Linear Density

– Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction.

Linear Density = <u>Number of atoms centered on direction vector</u> length of direction vector

### Planar Density

– Number of atoms per unit area that are centered on a particular crystallographic plane.

Planar Density = <u>Number of atoms centered on a plane</u> area of the plane

### **Linear Density**

 Calculate the linear density of the [100] direction for the FCC crystal



- $LD = n/L_L$  linear density
  - n = 0.5 atoms
  - $L_L = a$  line length

# **Planar Density**

Calculate the planer density of the (110) plane for the FCC crystal





- Compute planar area
- Compute number of atoms

For an atom to be counted, it has to be centered on that plane.

# **Planar Density**



Plane area  $A_P = (AC) \times (AD)$ 

AC = ...  $\mathbf{AR}$ AD = ...  $\mathbf{a}$  .... where  $a = 2\sqrt{2R}$ Area = ...  $8\sqrt{2R^2}$ .

Number of atoms = **2** atoms

$$PD = \frac{n}{A_{P}} = \dots \frac{2}{8\sqrt{2}R^{2}}$$

## **Linear and Planar Density**

- Why do we care?
- Properties, in general, depend on linear and planar density.

## • Examples:

- $\checkmark$  Speed of sound along directions
- ✓ Slip (deformation in metals) depends on linear and planar density
- ✓ Slip occurs on planes that have the greatest density of atoms in direction with highest density

we would say along closest packed directions on the closest packed planes

## **Crystals As Building Blocks**

• *Some* engineering applications require single crystals:



Turbine blades
Nickel alloy – single crystal
to improve high temp. mechanical properties



(Courtesy GE Superabrasives) - diamond single crystals for abrasives

• *Most* engineering materials are polycrystals.

( courtesy of Pratt and Whitney)

✓ Each "grain" is a single crystal.

(Courtesy P.M. Anderson)

- ✓ If crystals are randomly oriented, overall component properties are not directional.
- ✓ Crystal sizes typ. range from 1 nm to 2 cm (i.e., *from a few to millions of atomic layers*).



Nb-Hf-W plate with an electron beam weld

### **Single Vs Polycrystals**

#### <u>Single Crystals</u>

- Properties vary with direction: anisotropic.
  Example: the modulus of elasticity (E) in BCC iron:
- Polycrystals
- Properties may/may not vary with direction.
- If grains are randomly oriented: **isotropic**.

 $(E_{poly iron} = 210 \text{ GPa})$ - If grains are textured, anisotropic.



Polycrystalline materials, crystallographic orientations of the individual grains are totally random. Even though each grain may be anisotropic. A specimen composed of grains behave isotropically.

#### **Inter-Planar Spacing & X-Ray Diffraction**



• Inter-planar spacing

– The inter-planar spacing in a particular direction is the distance between equivalent planes of atoms

• The existence of, and distances between sets of planes in a material is characteristic for each material

• Inter-planar spacings are measured by x-ray diffraction to identify unknown materials!

## **X-Ray Diffraction**

- Can be used to determine crystal structure
  - identify unknown materials
  - measure lattice parameters
- X-rays are a form of electromagnetic radiation that have high energies and short wavelengths.
- Diffraction occurs whenever a wave encounters a series of regularly spaced obstacles that;
  - Can scatter the wave
  - Have a spacing comparable to the **wavelength**
- X-ray wavelength ( $\lambda$ ) ~ inter-atomic spacing.
- Other techniques such as neutron or electron diffraction, also, can be used.

### **Constructive & Destructive Interference**



### **Bragg's law**



**<u>The law:</u>** For constructive interference, the additional path length SQ+QT must be an integer number of wavelengths ( $\lambda$ ).

 $n\lambda = SQ + QT = d_{hkl}sin\theta + d_{hkl}sin\theta = 2d_{hkl}sin \theta$ n = 1,2,3...order of reflection

### Bragg's law

- we have a simple expression relating the <u>x-ray wavelength</u> and <u>interatomic spacing</u> to the angle of the diffracted beam.
- If Bragg's law is not satisfied, then the interference will be nonconstructive in nature so as to yield a very low intensity diffracted beam.
  - Magnitude of difference between two adjacent and parallel planes of atoms is function of Miller Indices and the lattice parameter. For cubic symmetry:

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

### **Diffractometer Technique**

• Use powder (or polycrystalline) sample to guarantee some particles will be oriented properly such that every possible set of crystallographic planes will be available for diffraction.



Each material has a unique set of planar distances and extinctions, making X-ray diffraction useful in analysis of an unknown material

## **X-Ray Diffraction**



To identify the crystal structure of a material having cubic crystal system (SC, BCC or FCC). You need to look at the values of  $h^2 + k^2 + l^2$  for the different peaks.

- If these values form a pattern of 1,2,3,4,5,6,8,.. (note 7 is missing) <u>the structure is SC</u>.
- ▶ In BCC, diffraction only occurs from planes having an even  $h^2 + k^2 + l^2$  sum of 2,4, 6, 8, 10, 12, 14,.....etc.
- ► For FCC metals, however, more destructive interference occurs, and planes having  $h^2 + k^2 + l^2$  sums of 3, 4, 8, 11, 12, 16, ... etc. will diffract

## **Examining X-ray Diffraction**

The results of a x-ray diffraction experiment using x-rays with  $\lambda = 0.7107$  Å (a radiation obtained from molybdenum (Mo) target) show that diffracted peaks occur at the following  $2\theta$  angles:

Determine 1) the crystal structure

2) the indices of the plane producing each peak

| Peak | 2θ    | Peak | 20    |
|------|-------|------|-------|
| 1    | 20.20 | 5    | 46.19 |
| 2    | 28.72 | 6    | 50.90 |
| 3    | 35.36 | 7    | 55.28 |
| 4    | 41.07 | 8    | 59.42 |

Use a = 2.868 Å

| peak | 20    | θ      | $\sin(\theta)$ | d        | $h^2 + k^2 + l^2$ |
|------|-------|--------|----------------|----------|-------------------|
| 1    | 20.2  | 10.1   | 0.175367       | 2.026325 | 2                 |
| 2    | 28.72 | 14.36  | 0.248014       | 1.432784 | 4                 |
| 3    | 35.36 | 17.68  | 0.303701       | 1.170067 | 6                 |
| 4    | 41.07 | 20.535 | 0.35078        | 1.013029 | 8                 |
| 5    | 46.19 | 23.095 | 0.392257       | 0.905911 | 10                |
| 6    | 50.9  | 25.45  | 0.429723       | 0.826927 | 12                |
| 7    | 55.28 | 27.64  | 0.463915       | 0.765981 | 14                |
| 8    | 59.42 | 29.71  | 0.49561        | 0.716995 | 16                |

Use *a* = 2.868 Å

### **Polymorphism and Allotropy**

- Some materials may have more than one crystal structure depending on temperature and pressure called *POLYMORPHISM*
- Carbon
- graphite
- diamond
- Iron BCC and FCC