Outline:

- Crystalline versus amorphous structures
- Crystal structure
 - Unit cell
 - Coordination number
 - Atomic packing factor
- Crystal systems

ENERGY AND PACKING

Dense, regular-packed structures tend to have lower energy.

CRYSTAL STRUCTURES & PROPERTIES

How do materials assemble?

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals
 -many ceramics
 -some polymers

Noncrystalline (amorphous) materials...

atoms have no periodic packing occurs for:
 -complex structures
 -rapid cooling

crystalline SiO₂

Si
Oxygen

Crystal Structure

Motivation: Many of the properties of materials (*especially mechanical*) are determined by the arrangement of the constituent atoms.

This arrangement is called the material's crystal structure.

 <u>Atomic structure</u> relates to the number of protons and neutrons in the nucleus of an atom, as well as the number and probability distributions of the constituent electrons.

– On the other hand, **crystal structure** pertains to the arrangement of atoms in the <u>crystalline solid material</u>.

Crystal Structure

> We need a way to specify crystallographic directions and planes.

Let's start with the hard sphere model (in which nearest neighbour atoms "touch" each other)... c

To illustrate the concept of z crystal structure and lattice systems, we first identify a coordinate system (x, y, z):

We can't specify directions or planes without knowing what the reference system is.

Crystal Structure

Now place an atom at each corner...

This represents the "hard sphere" model of a simple crystal system

- Atoms "touch" along the crystal axes
- These directions are referred to as "closepacked" in the simple cubic system

not many examples of simple cubic systems in nature, except for Po

The above diagram represents a simple cubic crystal structure

What is Unit Cell?

• A unit cell is the smallest entity that exhibits the chemical and physical properties of the material.

– Unit cells are the most elementary arrangement of atoms which can generate the entire crystal upon application of suitable translation, rotation, mirror, or inversion operations.

Definition:

the length of each unit cell axis is called a lattice

– In cubic systems, all three orthogonal lattice parameters are equal

 Lattice parameters are typically on the order of a few Angstroms (or a few tenths of a nanometer)

Simple Cubic Unit Cell

How many atoms does the simple cubic unit cell contain?

You should be able to convince yourself that a simple cubic structure contains ... atom/unit cell.

(Remember, a part of each atom is shared by another unit cell!)

- The number of atoms/unit cell is an important quantity and determines many physical properties.
- In general, the number of atoms/unit cell, N, is given by

$$N = N_i + \frac{N_f}{2} + \frac{N_c}{8}$$
 Where: $N_i = \#$ interior atoms,
 $N_f = \#$ face atoms,
 $N_c = \#$ corner atoms

Simple Cubic Unit Cell

- volume of the unit cell = a³
 - where a is the lattice parameter
- coordination # = 6
 - for simple cubic structures

✓CN is the number of nearest-neighbor atoms

✓ Coordination number is important in determining the structure of crystalline materials.

✓ Large atoms tend to have large CN, small atoms usually have small CN

it's easier to surround a big atom with lots of atoms than a smaller one.

BODY CENTERED CUBIC STRUCTURE (BCC)

Now, suppose we add another atom at the <u>center</u> of the cube

Examples of BCC systems: Cr, W, Mo, Ta, Fe (aFe T_m below 912°C)

Notice that in the BCC structure, <u>atoms touch along the body</u> <u>diagonals</u>. These are the close-packed directions in the bodycentered cubic structure.

BCC unit cells have a CN = ...8...

2 atoms in unit cell

Atomic Packing Factor

Atomic Packing Factor (APF or APE) = $\frac{\text{total "sphere" volume}}{\text{total cell volume}}$

"total sphere volume" is just the volume per atomic "sphere" multiplied by the number of atoms in the unit cell

Example: Calculate the APF for a BCC unit cell:

Face Centered Cubic Unit Cell

Now suppose we place equivalent atoms at the corners of the unit cell, AND in the center of each face:

This is a (FCC) crystal structure

- Examples of FCC metals: Cu, Ni, Au, Ag, Fe (T_m above 912°C)
- Close-packed directions in FCC metals are along face diagonals

Face Centered Cubic Unit Cell

• Q: How many atoms per unit cell in the FCC structure?

recall,
$$N = N_i + \frac{N_f}{2} + \frac{N_c}{8}$$

• FCC unit cells have a CN = 12 and an APF = 0.75

- maximum packing efficiency for monosized spheres

Hexagonal Unit Cell

- There are other ways in which atoms can be arranged to form unit cells:
 - For example...

> Examples of HCP systems (Mg, Co, Ti, Zn, Zr, RE)

The HCP unit cell consists of 6 atoms forming the corners of a hexagon in the basal planes + 1 atom in the center. In addition, there are 3 interior atoms midway between basal planes along the c-axis.

atoms/unit cell = (1/6)*12 (corner atoms) + (1/2)*2 (center face atoms) + 3 (interior atoms) =

 \blacktriangleright Coordination # = ...12.

General convention for unit cell axis and angle notation:

In total, there are 7 distinct and unique crystal systems:

cubic represents only one of the 7

Crystal Systems

a=b=c $\alpha = \beta = \gamma = 90$

a=b≠c $\alpha = \beta = \gamma = 90$

a≠b≠c $\alpha = \beta = \gamma = 90$

Crystal Systems

Rhombohedral

a=b=c

"Pushed over" cube

Hexagonal

$$\alpha = \beta = 90 \gamma = 120$$

"Squished" tetragonal Monoclinic a≠b≠c α=γ = 90, β≠90

"Pushed over" orthorhombic (in one direction)

Triclinic			
a≠b≠c			
α≠β≠γ ≠ 90			

"Pushed over" orthorhombic (in two directions)

	<u>c</u>	'rystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Crystal Sy	stems	Cubic	a = b = c	$\alpha=\beta=\gamma=90^\circ$	a
Note that these 7 crystal systems do not account for all the possible lattice types	rystal	Hexagonal	$a = b \neq c$	$\alpha=\beta=90^\circ, \gamma=120^\circ$	
	ount for ice types	Fetragonal	$a = b \neq c$	$\alpha=\beta=\gamma=90^\circ$	e a a
for example, the cu	bic	Rhombohedral	a = b = c	$\alpha=\beta=\gamma\neq90^\circ$	and
system contains SC, F and BCC as subsets	C, FCC,	Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	
	Ν	Monoclinic	a≠b≠c	$\alpha = \gamma = 90^{\circ} \neq \beta$	HT .

Triclinic

 $a \neq b \neq c$

 $\alpha\neq\beta\neq\gamma\neq90^\circ$

Crystal Systems

There are <u>14</u> unique lattice types from this framework of 7 crystal systems (called Bravais lattices):

Crystal system	Types of possible lattice arrangements
Cubic	SC, BCC, FCC
Hexagonal	HCP
Tetragonal	Simple, body-centered
Orthorhombic	Simple, base-centered, BC, FC
Rhombohedral	Simple
Monoclin	Simple, base-centered
Triclinic	Simple

We will mainly be concerned with cubic and hexagonal systems in this class. But you need to realize that many other types of symmetries exist!