Outlines

• Types of bonds:

- Ionic
- Covalent
- Metallic
- Secondary bonding

• <u>Examples</u>:

- relation between bond energy and properties
- Summary

IONIC BONDING

Electrostatic attraction between oppositely charged ions

- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.

EXAMPLES: IONIC BONDING

Predominant bonding in Ceramics

IONIC BONDING: *Summary*

Ionic: electron transfer from one atom (cation) to the other (anion).

- More likely between atoms with large <u>electronegativity differences</u>
- Typically found between metal and non-metal atoms: NaCl, KF, CsBr, MgO...
- Ionic bonding is non-directional : the magnitude of the bond is equal in all direction around an ion

Typical bonding energies: 600 to 1500 KJ/mole (3 to 8 eV/atom)

Typical characteristics of ionically-bonded materials:

- High melting temperature
- Hard
- Brittle
- Isulative material (very low electrical and thermal)

COVALENT BONDING

There is electron sharing between two adjacent atoms such that each atom assumes a stable electron configuration.

- Requires shared electrons
- Example: CH4
 - C: has 4 valence e, needs 4 more
 - H: has 1 valence e, needs 1 more
 - Electronegativities are comparable.

EXAMPLES: COVALENT BONDING

IA																	0
1]																2
H 1.0080	IIA											IIIA	IVA	VA	VIA	VIIA	He 4.0026
3	4											5	6	7	8	9	10
LI	Be											В	С	N	0	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12	1										13	14	15	16	17	18
Na	Mg							VIII				AI	SI	P	S	CI	Ar
22.990	24.305	IIIB	IVB	VB	VIB	VIIB				IB	IIB	26.982	28.086	30.974	32.064	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	П	V	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.08	44.956	47.87	50.942	51.996	54.938	55.845	58.933	58.69	63.54	65.41	69.72	72.64	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.4	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.30
55	56	Rare	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	earth	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	BI	Po	At	Rn
132.91	137.34	series	178.49	180.95	183.84	186.2	190.23	192.2	195.08	196.97	200.59	204.38	207.19	208.98	(209)	(210)	(222)
87	88	Acti-	104	105	106	107	108	109	110								
Fr	Ra	nide	Rf	Db	Sg	Bh	Hs	Mt	Ds								
(223)	(226)	series	(261)	(262)	(266)	(264)	(277)	(268)	(281)								

- Molecules with nonmetals (Cl_2, F_2, H_2)
- Molecules with metals and nonmetals (CH4, H2O, HNO3 and HF)
- Elemental solids (RHS of Periodic Table) (Diamond C, Si,..etc)
- Compound solids (about column IVA) such as GaAs, InSb and SiC

COVALENT BONDING: *Summary*

Covalent: electron sharing between atoms each atom contributes (at least) one electron to the bond

- Tends to be a highly directional bond
- Each atom tries to achieve a more stable orbital filling configuration
- Gives rise to a fixed orientation of the atoms
- \square Shared electrons may be considered to belong to each atom

COVALENT BONDING: *Summary*

Note how the sharing of electrons acts to complete the filling of electronic states in each respective atom:

$$1s^2(2s^22p^2) \rightarrow 1s^2(2s^22p^6)$$

Difficult to assign general characteristics to covalently-bonded materials:

- Bonds may be strong (diamond, $Tm > 3550^{\circ}C$) or weak (Bi, $Tm = 270^{\circ}C$)
- Materials may be <u>conductive</u> (GaAs) or <u>insulating</u> (diamond)

MOST MATERIALS ARE NEITHER 100% IONIC NOR 100% COVALENT

% ionic character = $\{1 - \exp[-(0.25)(X_{\rm A} - X_{\rm B})^2]\} \times 100$

Where X_A , X_B are the electronegativities of the A and B atoms, respectively.

Example:

Compute the percentage ionic character of the interatomic bonds for TiO2 and ZnTe.

• For ZnTe, $X_{Zn} = 1.6$ and $X_{Te} = 2.1$, and therefore, **Ionic character % = 6.1 %**

• For TiO2, $X_{Ti} = 1.5$ and $X_O = 3.5$, and therefore, **Ionic character % = 63.2 %**

METALLIC BONDING

Arises from a sea of <u>donated</u> valence electrons (1, 2, or 3 from each atom).

- Valence electrons are not bound to any specific atom but are **free** to drift throughout the material
- Active bonding electrons form an "*electron sea*"

- Primary bond for (*not surprisingly*) metals and their alloys
- metallic bond is <u>nondirectional</u> in character

METALLIC BONDING

- ✓ Metallic bonding can be either weak (68 kJ/mole or 0.7 eV/atom for Hg) or strong (850 kJ/mole or 8.8 eV/atom for W)
- ✓ Metallic bonding gives rise <u>to high electrical and thermal conductivity</u>
- ✓ Metallic bonding also gives rise to ductility (*at least more than in most covalent and ionic solids*). Think about why this might be so?.

The electrons are loosely held since each atom has several unoccupied valence orbitals; it is relatively easy for the electrons to move about. In this manner the electrons allow atoms to **slide past each other**

Secondary Bonding

□ Van der Waals bonding

□Bond energy is very weak compared to others

Compare typical secondary bonding strengths (10 kJ/mole) with typical primary bonding strengths (50 to 1000 kJ/mole)

Exists between almost all atoms and molecules
Arise from atomic or molecular dipoles

Physical bonds, not chemical

Secondary Bonding

Fluctuating Induced Dipole Bonds

Thermal vibration fluctuations can disrupt charge symmetry which leads to a dipole.

The presence of one dipole can induce a dipole in an adjacent molecule (or atom) and so on.

- Hydrogen bonding is a special case of secondary bonding.
- The hydrogen bond is generally stronger than for fluctuating induced dipoles

PROPERTIES FROM BONDING: T_M

• Bond length, r

Bond energy, E₀

Energy (r) r_o r_o smaller T m larger T m

• Melting Temperature, Tm

Tm is larger if Eo is larger.

PROPERTIES FROM BONDING: E

PROPERTIES FROM BONDING: α

Coefficient of thermal expansion, α

Problem 2.22 p. 42

What type(s) of bonding would be expected for each of the following materials?

Answer:

- 1. Brass (copper-zinc alloy) metallic since metal alloy
- 2. Rubber covalent with some van der Waals
- 3. Barium sulfide (BaS) mainly ionic (some covalent char)
- 4. Solid xenon van der Waals because inert gas
- 5. Bronze (copper-tin alloy) metallic since metal alloy
- 6. Nylon covalent with some van der Waals
- 7. Aluminum phosphide (AIP) mainly covalent (some ionic char)