<u>Classes of Materials</u>

	POLYMERS	CERAMICS	METALS
DUCTILITY	Varies	Poor	Good
CONDUCTIVITY (ELECTRICAL & THERMAL)	Low	Low	High
HARDNESS/STRENGTH	Low – medium	High	Medium– high
CORROSION RESISTANCE	Fair – good	Good	Fair – poor
STIFFNESS	Low	High	Fair
FRACTURE TOUGHNESS	Low – Medium	Low	High
MACHINABILITY	Good	Low	High

Why study bonding?

• Because the properties of materials (*strength, hardness, conductivity, etc..*) are determined by the manner in which atoms are connected.

What determines the nature of the chemical bond between atoms?

- Electronic structure (distribution of electrons in atomic orbitals)
- Number of electrons and protons (tendency for an atom to attract an electron)

Atomic Structure

Bohr model of the atom: (1913)

Bohr atomic modelelectrons revolve around nucleus in discrete orbitals

Based on earlier work of Rutherford and his own from spectral emission studies

Adapted from Fig. 2.1, Callister 6e.

Nucleus: Z = # protons

= 1 for hydrogen to 94 for plutonium N = # neutrons

Atomic mass $A \approx Z + N$

Bohr vs. Quantum-Mechanical Model: (1927)

Wave-mechanical atomic model
Position of electron is imprecisely known; only a probability distribution.
Electron exhibits both particle and wave characteristics

Schroedinger, Heisenburg, Planck and others developed this model (wave mechanics), which allows a more precise description of the atom.

Increasing Electronegativity -

• http://www.webelements.com

Electronegativity - each kind of atom has a certain <u>attraction</u> for the electrons involved in a chemical bond. This "electronattracting" power of each atom can be listed numerically on an electronegativity scale.

Metallic Elements			Nonmetallic Elements			
Li	Be		с	N	0	F
(1.0)	(1.5)		(2.5)	(3.0)	(3.5)	(4.0)
Na	Mz	Al		Р	S	Cl
(1.0)	(1.2)	(1.5)		(2.1)	(2.5)	(3.0)
-	<i>a</i> .	a -			a -	D -
K	Ca	20			26	BI
(0.9)	(1.0)	(1.3)			(2.4)	(2.8)

Electronegativity Values of Selected Elements

Electronegativity was originally worked out by Linus Pauling in 1939

The Periodic Table

• Columns: Similar Valence Structure

Electropositive elements: Readily give up electrons to become + ions.

Electronegative elements: Readily acquire electrons to become - ions.

Electronegativity

• Ranges from 0.7 to 4.0,

• Large values: tendency to acquire electrons.

Smaller electronegativity

Larger electronegativity

Electronegativity

 ✓ High electronegativity → strong tendency to accept an electron (i.e., Group VIIA: F, Cl)

✓ Low electronegativity (called "electropositive") → strong tendency to give up an electron, i.e., Group IA: Li, Na, K)

The difference in electronegativity between two atoms determines the resulting <u>electron distribution</u> and the <u>type of bond</u>

Density, Atomic # & Wt, Mole & Avogadros

• Density

> g/cm³ (most solids range ~ 1 - 23 g/cm³)

- Atomic number = number of protons (Z)
- Atomic weight (A)
- ➢ g/mole

A = number protons (Z) + neutrons (N)

=Z+N

• Mole = number of particles 1 amu/atom or molecule = 1 g/mol

In one **mole** of a substance there are 6.023*10²³(Avogadro's number) atoms or molecules

Review Problems

• How many atoms in 6 grams of carbon?

Number of moles =
$$\frac{Mass}{Mwt}$$

= $\frac{6}{12}$ = 0.5
Number of atoms = 0.5*6.023*10²³

• Calculate the volume of 1 mole of Au.

$$mass = of \ moles * Mwt = 1 * 196.97$$
$$Volume = \frac{Mass}{\rho_{Au}} = \frac{196.96 \ (g)}{19.3 \ (\frac{g}{mL})}$$

Electron energy state

Electrons

- have discrete energy states
- tend to occupy lowest available energy state.

Stable electron configurations...

• have complete s and p subshells

Most elements: Electron configuration not stable.

Bonding Forces and Energies

Bonding energy: Minimum of the potential vs. distance curve.

➤ Indicates how much energy must be supplied to completely disassociate the two atoms

> Depth of the potential well indicates bonding strength

- Deep well === strongly bounded
- Shallow well === weakly bounded

Bound energy

The higher the bond energy

- Higher melting temperature
- Solid material

□ State as function of bonding energy

- Solid: high bonding energy
- Liquid: Moderate BE
- Gas: Low BE