Gene Expression

Chapter 6: Genes, Genomics, and Chromosomes

Overview of the structure of genes and chromosomes

Single-copy genes **Gene families Tandemly repeated genes** Introns

Simple-sequence DNA **Transposable DNA elements Spacer DNA**

Figure 6-1 Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company

Eukaryotic gene structure

Gene: is a unit of DNA that contains the information to specify the synthesis of a single polypeptide chain or functional RNA (tRNA)

 Most eukaryotic genes contain introns and produce mRNAs encoding single proteins

Exon and Gene duplication

(a) Exon duplication

Figure 6-2 Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company •Simple and complex transcription units are found in eukaryotic genomes

Simple transcription unit: the transcription unit that produces a primary transcript which is processed to yield a single type of mRNA, encoding a single protein

•Simple and complex transcription units are found in eukaryotic genomes

Complex transcription unit: the transcription unit that produce s a primary transcript which can be processed in more than one way, leading to the formation of mRNAs containing different exons

Isoforms: the various proteins encoded by the alternatively processed mRNAs expressed from one gene

Protein-coding genes may be solitary or belong to a gene family

Solitary genes: are protein coding genes that are represented only once in the haploid genome

gene family (gene cluster): set of genes that arose by duplication of a common ancestral gene and subsequent divergence due to small changes in the nucleotide sequences

Protein family: set of homologous proteins encoded by a gene family

Pseudogene: DNA sequence that is similar to that of a functional gene but does not encode a functional protein, probably arose by sequence drift of duplicated genes

Alu: is a non coding repeating sequences (~ 300 bp) that is abundant in the human genome

Chromosomal organization of genes and noncoding DNA

- Genomes of many organisms contain much nonfunctional DNA
- Nonprotein-coding genes encode functional RNAs

© 2008 W. H. Freeman and Company

Structural organization of eukaryotic chromosomes

Chromatin exists in extended and condensed forms
Structure of nucleosome
Structure of 30 nm fiber

•Modifications of histone tails control chromatin condensation and function

^{© 2008} W. H. Freeman and Company

Histone acetylation

Lys 16 in N-terminus of H4 can be either acetylated or deacetylated

Figure 6-32b Molecular Cell Biology, Sixth Edition © 2008 W.H. Freeman and Company

Other histone modifications:

- •Lys ϵ amino group can be methylated
- •Arg side chains can be methylated
- •Ser & Thr side chains can be phosphorylated
- •Lys in the C-terminal tails of H2A & H2B can be ubiquitinated

Heterochromatin versus euchromatin

Figure 6-33a Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company

Heterochromatin (inactive/condensed)

Reading the histone code

Reading the histone code: means that the histone code is "read" by proteins that bind to the modified histones tails & in turn promote condensation or decondensation of chromatin, forming "closed" or "opened" chromatin structures

In higher eukaryotes some proteins contain a chromodomain

Chromodomain: a protein domain that binds to histone tails when they are methylated at specific lysines

One example of the chromodomain containing proteins is Heterochromatin Protein I (HP1), that also contains another domain called chromoshadow domain

Model for the formation of heterochromatin

Boundary proteins: are regions in chromatin where several non-histone proteins bind to DNA, possibly blocking histone methylation on the other side of the boundary

X-chromosome inactivation in mammalian females

Dosage compensation: is a process that inactivate one of the X chromosomes in females. This will generate equal expression of genes on the sex chromosomes in males & females

How inactivation of the Xist - coated X chromosome occurs?

Figure 7-36 Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company The women are genetic mosaics since half of their cells have an active X_m and the other half have an active X_P

Epigenetic process: is a process that affects the expression of specific genes & is inherited by daughter cells, but is not the result of a change in DNA sequence

•Nonhistone proteins provides a structural scaffold for long chromatin loops

Figure 6-35 Molecular Cell Biology, Sixth Edition © 2008 W.H. Freeman and Company SARs: Scaffold - associated regions MARs: Matrix – attachment regions

Insulators: DNA sequences of tens to hundreds of base pairs that insulate transcription units from each other

© 2008 W. H. Freeman and Company

Ringlike structure of SMC protein complexes

SMC protein: Structural maintenance of chromosome protein

Ringlike structure of SMC protein complexes

SMC protein: Structural maintenance of chromosome protein

Metaphase chromosome structure

Figure 6-39 Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company Ringlike structure of SMC protein complexes

SMC protein: Structural maintenance of chromosome protein

Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company