Gene Expression

Chapter 4: Basic Molecular Genetic mechanisms

The four basic molecular genetic processes

© 2008 W.H. Freeman and Company

Structure of nucleic acid

•A nucleic acid strand is a linear polymer with end-to-end directionality

•Native DNA is a double helix of complementary antiparallel strand

(a) B DNA (b) A DNA (c) Z DNA

•Different types of RNA exhibit various conformations related to their functions

Ribozyme: (folded RNA and proteins) folded RNA has a catalytic function such as splicing of the non coding regions of the pre-mature mRNA

Transcription of protein-coding genes and formation of functional mRNA

Gene: is a unit of DNA that contains the information to specify the synthesis of a single polypeptide chain or functional RNA (tRNA)

 A template DNA strand is transcribed into a complementary RNA chain by RNA polymerase

Stages of transcription

Figure 4-11 Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company

Structure of RNA polymerase....

•Organization of genes differs in prokaryotic and eukaryotic DNA

Operon: continuous segment of the genome that contains genes which encode for proteins with similar functions

(b) Eukaryotes

© 2008 W.H. Freeman and Company

(a) Prokaryotes

Eukaryotic precursor mRNAs are processed to form functional mRNAs

Figure 4-14 Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company

Function of 5' cap:

•Protect the mRNA from enzymatic degradation

Assist in its transport to the cytoplasm

•It is bound into a protein factor which is required to initiate translation in the cytoplasm

The decoding of mRNA by tRNAs

mRNA carries information from DNA in a 3 letter genetic code

Genetic code: rules where Codons (nucleotide triplets) in the mRNA specify amino acids in the protein

Reading frame: sequence of codons that runs from a specified start codon to a stop codon

TA	BLE	4-1 The Ge	netic Code (C	Codons to Am	iino Acids)*		
			SECONE	POSITION			
		U	с	A	G		
FIRST POSITION (5' END)	U	Phe	Ser	Tyr	Cys	U	
		Phe	Ser	Tyr	Cys	с	
		Leu	Ser	Stop	Stop	A	
		Leu	Ser	Stop	Trp	G	4
	c	Leu	Pro	His	Arg	U	HIRD
		Leu	Pro	His	Arg	с	POS
		Leu	Pro	Gin	Arg	A	ITIO
		Leu (Met)*	Pro	Gln	Arg	G	N (3'
	A	lle	Thr	Asn	Ser	U	END)
		lle	Thr	Asn	Ser	с	
		lle	Thr	Lys	Arg	A	
		Met (Start)	Thr	Lys	Arg	G	
	G	Val	Ala	Asp	Gly	U	
		Val	Ala	Asp	Gly	с	
		Val	Ala	Glu	Gly	Α	
		Val (Met)*	Ala	Glu	Glv	G	

*AUG is the most common initiator codon; GUG usually codes for valine and CUG for leucine, but, rarely, these codons can also code for methionine to initiate a protein chain.

- The folded structure of tRNA promotes its decoding functions
- Non standard base pairing often occurs between codons and anticodons

- The folded structure of tRNA promotes its decoding functions
- Non standard base pairing often occurs between codons and anticodons

© 2008 W. H. Freeman and Company

- The folded structure of tRNA promotes its decoding functions
- Non standard base pairing often occurs between codons and anticodons

Stepwise synthesis of proteins on ribosomes

© 2008 W.H. Freeman and Company

Svedberg unit: a measure of sedimentation rate of macromolecules centrifuged under standard conditions

•Methionyl-tRNAi Met recognizes the AUG start codon.....

•Translation initiation usually occurs at the first AUG from the 5' end of an mRNA

•During chain elongation each incoming aminoacyl-tRNA moves through three ribosomal sites

© 2008 W.H. Freeman and Company

•Translation is terminated by release factors when a stop codon is reached

•Polysomes and rapid ribosome recycling increase the efficiency of translation

Polyribosomes: simultaneous translation of an mRNA by multiple ribosomes

Figure 4-28a Molecular Cell Biology, Sixth Edition © 2008 W.H. Freeman and Company

