Solution for Ordinary Differential Equations (1) First Exam

Question one: Circle the letter that represents the correct answer (2 points each).

1. The largest interval on which the following initial value problem has a unique solution is

$$(x^2 - 1)\frac{dy}{dx} + \frac{1}{x - 5}y = \frac{\ln(x - 2)}{x - 6}, \quad y(4) = 1.5$$

a. (1,5)

b. (2,5)

c. (2,6)

d. (-1,5)

2. A general solution to $y' + \frac{y}{2x} = \frac{x}{y}$, x > 0, is

 $\mathbf{a.} y^2 = \frac{2x^2}{3} + \frac{C}{r}$ b. $y^2 = \frac{x^2}{3} + \frac{C}{r}$

c. $y^2 = 2x^2 + \frac{C}{x}$ d. $y^2 = 3x^2 + \frac{C}{x}$

3. If $\frac{dY}{dt} = \frac{Y^2 + 1}{t + 1}$ with Y(0) = 0, then Y(2) = 0

a. tan(ln 5)

b. tan(ln 4)

c. tan(ln 2)

d. tan(ln 3)

4. The differential equation $\frac{dw}{dt} = \frac{2w+t+2}{w-t+10}$ can be converted to a homogenous one by

a. t = x + 6, w = y - 4

c. t = x - 6, w = y + 4

b. t = x + 6, w = y + 4d. t = x - 6, w = y - 4

5. If $(6x^my^2 + e^x)dx + (2x^{(m+1)}y - \sin y)dy = 0$ is an exact, then

a. m = 2 b. m = 6

6. An integrating factor of the following **linear** equation $(x^2 + 1)y' + 2xy = \tan(x^2)$ is

a. $\mu(x) = \ln(1-x^2)$

b. $\mu(x) = \ln(x^2 + 1)$

c. $\mu(x) = 1 - x^2$ d. $\mu(x) = x^2 + 1$

Question two: Find a general solution to the following equations (2 points each)

(a) $y'' - \alpha^2 y = 0$ (where α is a positive constant).

Aux. Equ. $r^2 - \alpha^2 = 0 \Rightarrow r = \pm \alpha$ $y(x) = c_1 e^{\alpha x} + c_2 e^{-\alpha x}$

(b) y'' - 14y' + 49y = 0.

Aux.Equ. $r^2 - 14r + 49 = 0 \Rightarrow r = 7$ with multiplicity 2

 $y(x) = c_1 e^{7x} + c_2 x e^{7x}$

(c) 2y'' + 2y' + 5y = 0.

Aux. Equ. $2r^2 + 2r + 5 = 0 \Rightarrow \frac{-2 \pm \sqrt{-36}}{4} \Rightarrow \frac{-1}{2} \pm \frac{3}{2}i$

 $u(x) = c_1 e^{-0.5x} \sin(1.5x) + c_2 e^{-0.5x} \cos(1.5x)$

Question three: Consider the following differential equation (7 points)

$$(3x^2y + y^2 + ye^x)dx + (2x^3 + 3xy + 2e^x)dy = 0$$
(1)

- (a) Show that equation (1) is non-exact. $M_y=3x^2+2y+e^x,\ N_x=6x^2+3y+2e^x\ M_y\neq N_x \text{ so the equation is non-exact}$
- (b) Find an integrating factor of equation (1).

$$\frac{N_x - M_y}{M} = \frac{6x^2 + 3y + 2e^x - (3x^2 + 2y + e^x)}{3x^2y + y^2 + ye^x} = \frac{3x^2 + y + e^x}{y(3x^2 + y + e^x)} = \frac{1}{y}$$

$$\mu(y) = e^{\int \frac{1}{y} dy} = y$$

(c) Find a general solution to equation (1).

Multiply equ. (1) by y, we get

$$(3x^2y^2 + y^3 + y^2e^x)dx + (2x^3y + 3xy^2 + 2e^xy)dy = 0$$

the new one is an exact

$$f(x,y) = c, f(x,y) = \int (3x^2y^2 + y^3 + y^2e^x)dx = \int (2x^3y + 3xy^2 + 2e^xy)dy$$
$$x^3y^2 + y^3x + y^2e^x = c$$