coordinates, f becomes simply

$$\lambda_1 y_1^2 + \cdots + \lambda_n y_n^2$$

where $\lambda_1, \ldots, \lambda_n$ are the (necessarily real) eigenvalues of A. It is thus clear that f is positive definite precisely when all the λ 's are positive.

For further information on this topic, see Chapter 10 of Vol. 1 of the book by Gantmacher listed at the end of the chapter.

For a general function $F(x_1, \ldots, x_n)$, with critical point at (x_1^0, \ldots, x_n^0) , the method of Section 2.19 leads us to the quadratic form

$$\sum_{i,j} \frac{\partial^2 F}{\partial x_i \, \partial x_j} u_i u_j,$$

where (u_1, \ldots, u_n) is a unit vector and all derivatives are evaluated at the critical point. If this form is positive definite, then F has a minimum at the critical point. Hence if all eigenvalues of the matrix $(\partial^2 F/\partial x_i \partial x_j)$ are positive, there is a minimum. Similarly, if all eigenvalues are negative, then there is a maximum. This matrix is called the Hessian matrix of F.

PROBLEMS

1. Locate the critical points of the following functions, classify them, and graph the func-

a)
$$y = x^3 - 3x$$
,

b)
$$y = 2 \sin x + \sin 2x$$
, **c)** $y = e^{-x} - e^{-2x}$.

c)
$$y = e^{-x} - e^{-2x}$$
.

- 2. Determine the nature of the critical point of $y = x^n (n = 2, 3, ...)$ at x = 0.
- 3. Determine the absolute maximum and absolute minimum, if they exist, of the following functions:

a)
$$y = \cos x, -\frac{\pi}{2} \le x \le \frac{\pi}{2},$$

b)
$$y = \log x, \ 0 < x \le 1,$$

c)
$$y = \tanh x$$
, all x ,

d)
$$y = \frac{x}{1 + x^2}$$
, all x.

4. Find the critical points of the following functions and test for maxima and minima:

a)
$$z = \sqrt{1 - x^2 - y^2}$$
,

b)
$$z = 1 + x^2 + y^2$$
,

c)
$$z = 2x^2 - xy - 3y^2 - 3x + 7y$$
,

(a)
$$z = x^2 - 5xy - y^2$$
,

e)
$$z = x^2 - 2xy + y^2$$
,

f)
$$z = x^3 - 3xy^2 + y^3$$
,

g)
$$z = x^2 - 2x(\sin y + \cos y) + 1$$
,

h)
$$z = xy^2 + x^2y - xy$$
,

i)
$$z = x^3 + y^3$$
,

$$\mathbf{j}) \ z = x^4 + 3x^2y^2 + y^4,$$

k)
$$z = [x^2 + (y+1)^2][x^2 + (y-1)^2]$$
 (interpret geometrically).

- 5. Find the critical points of the following functions, classify, and graph the level curves of the functions:
 - a) $z = e^{-x^2 y^2}$,
 - **b**) $z = x^4 y^4$,
 - c) $z = \sin x \cosh y$,
 - **d**) $z = \frac{x}{x^2 + y^2}$,
 - (e) $z = x^2 xy + y^2$,
 - **f**) $z = x + y + \sqrt{1 x^2 y^2}$.
- 6. Find the critical points of the following functions with given side conditions and test for maxima and minima:
 - a) z = 3x + 4y, where $x^2 + y^2 = 1$,
 - **b**) $z = x^2 + y^2$, where $x^4 + y^4 = 1$,
 - c) $z = x^2 + 24xy + 8y^2$, where $x^2 + y^2 = 25$,
 - **d**) w = x + z, where $x^2 + y^2 + z^2 = 1$,
 - e) w = xyz, where $x^2 + y^2 = 1$ and x z = 0,
 - f) $w = x^2 + y^2 + z^2$, where x + y + z = 1 and $x^2 + y^2 z^2 = 0$.
- 7. Find the point of the curve

$$x^2 - xy + y^2 - z^2 = 1$$
, $x^2 + y^2 = 1$

nearest to the origin (0, 0, 0).

- 8. Find the absolute minimum and maximum, if they exist, of the following functions:
 - a) $z = \frac{1}{1 + x^2 + y^2}$, all (x, y)
 - **b**) $z = xy, x^2 + y^2 \le 1$,
 - c) w = x + y + z, $x^2 + y^2 + z^2 \le 1$,
 - **d**) $w = e^{-x^2 y^2 z^2}$, all (x, y, z).
- 9. Determine whether the given quadratic form is positive definite:
 - a) $3x^2 + 2xy + y^2$,
 - **b**) $x^2 xy 2y^2$,
 - c) $\frac{5}{3}x_1^2 + \frac{4}{3}x_1x_2 + 2x_2^2 + \frac{4}{3}x_2x_3 + \frac{7}{3}x_3^2$.
- 10. Prove the validity of the criterion (2.143) for a minimum, under the conditions stated. [Hint: The function $\nabla_{\alpha} \nabla_{\alpha} f(x_0, y_0)$ is continuous in α for $0 \le \alpha \le 2\pi$ and has a minimum M_1 in this interval; by (2.143), $M_1 > 0$. By the Fundamental Lemma of Section 2.6, $\partial z/\partial x$ and $\partial z/\partial y$ have differentials at (x_0, y_0) . Show that this implies that

$$\nabla_{\alpha} f(x, y) = \nabla_{\alpha} f(x_0, y_0) + s \nabla_{\alpha} \nabla_{\alpha} f(x_0, y_0) + \epsilon s = s \nabla_{\alpha} \nabla_{\alpha} f(x_0, y_0) + \epsilon s,$$

where $x = x_0 + s \cos \alpha$, $y = y_0 + s \sin \alpha$ (s > 0) and $|\epsilon|$ can be made as small as desired by choosing s sufficiently small. Choose δ so that $|\epsilon| < \frac{1}{2}M_1$ for $0 < s < \delta$ and show that

$$\nabla_{\alpha} f(x, y) = s[\nabla_{\alpha} \nabla_{\alpha} f(x_0, y_0) + \epsilon] > 0 \quad \text{for } 0 < s < \delta.$$

Accordingly, f increases steadily, as one recedes from (x_0, y_0) on a straight line in the neighborhood of radius δ of (x_0, y_0) .]