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Thus Eq. (2.43) asserts that if we have successive mappings u = g(x), y = f(u) and
hence obtain a composite mapping y = f(g(x)), then the matrix of the linear approx-
imation of the composite mapping is obtained by multiplying the approximating
matrices of the two stages. In the special case when f and g are linear, then we
have u =Bx.y = Au for appropriate matrices A and B (ux = B,y, = A), and the
composite mapping isy = A(Bx) = ABX, as in Section 1.8; thusy, = AB = y,u,.

Case of square matrices. In the preceding analysis, let m = n = p, so that all the
Jacobian matrices appearing are square and each has a determinant—the Jacobian
determinant of the corresponding mapping, as in Section 2.7. For example,
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To the equation (2.49) we can apply the rule det AB = det A det B (Eq. (1.60) in
Section 1.9) to obtain the following very useful rule:

det yx = det y, det uy; (2.50)
that 1s,
A(Viv -y Yn) _ Vi yn) Ouy, . “n)‘ 2.51)
I E ST uy. ... up) d(xy, . ... xn)

If, for example, n = 2, then each determinant here can be interpreted as in Section
2.7 as plus or minus the ratio of small corresponding areas, and (2.51) states roughly
that

AA, AA, LA,

AA; DA, DA

where we have written AA, for an “area element” in the x,x,-plane, and similarly
for AA,, AA,. There is a similar interpretation for n = 3, in terms of volumes, and
for higher n in terms of higher-dimensional volume.

PROBLEMS

1. Find the Jacobian matrix (dyv; /dx;) in the form of a product of two matrices and evaluate
the matrix for the given values of xj. x>. . ...

a) vy = ujur — 3uy, va = us + 2u s + 21y — uari g = x)cos3x2. 1y = x;Sin3x:;
Xy =0,x;=0. i

b) v = w7 + 4 — 3uy 4+ uz, vo = ud — w3+ 2uy — 3uyiuy = xx2x3, 102 = xpxixs,
1y = .rfxzx_%;xf =l,xx=1x3=1

C) Vi =wue, vo =uje 7, vy = uf; H| = .1'12 + X2, 4y = 2.:13 —xnx; =1, x2=0.

d) v =u$+---+uﬁ —uf.y; :u%+---+uﬁ —u%,.“._v,, =u‘%+-~+uﬁ—uﬁ;

bl 2
up =Xy +xpx2.u = 1,2 + 2x1x3, ..., u, =x;+nxjxix; =1,x =0.
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2. a) Find 3(z, w)/8(x,y) forx = 1,y = 0if z = &? + 3u’v — v + > = v, w =
u' + v - 2u?iu = xcosxy, v =xsinxy+x? — y%.
b) Find d(x, y)/3(s. 1) fors = 0,t = 0if x = (2% + w?)'/?, v = w(z® + w172
=G4t + D L w=0Q2s -t 4+ 1)
3. Justify the rules, under appropriatc hypotheses:
a) If y = f(u), u = g(v), v = h(x), then yx = y,u,vy.
b) o ow) _ oz, w) Iu, v) (s, 1)
dv.y) T Hu, vy dsor) alx. vy’

4. For certain functions f(x, v), g(x, v), p(u, v), g(u, v) it is known that f(xp, vo) = uy,
g(xp. ¥0) = vp and that f(xy, vo) = 2, f,(x0, yo) = 3, g:(x0, yo) = —1, gv(x0, o) = 5.
pulig, vo) = 7, pulug, vo) = 1, qu(ug, vo) = =3, qu(ug, vy) = 2. Let z = F(x,y) =
p(fx,v), g(x. ¥), w = G(x,y) = q(f(x,y), g(x. y)) and find the Jacobian matrix of
z(x, y), w(x, y) at (xq. yo)-

5. Letu; = xiy — 3x2 + 2xy1x2, un = 2x1 + 5)(3 —3x1x. Letw = (w, w>y) be a vector

% l;] for u = (3, 3). Find the Jacobian matrix

atx = (2, 1) for the composite function wlu(x)].

function of w = (u;, uz) such that w, = [

6. Let u = f(x) and v = g(x) be differentiable mappings from a domain D in 3-dimensional
space to 3-dimensional space. Let a and b be constant scalars. Let A be a constant 3 x 3
matrix. Show:

a) dlu+v)=du+dv

b) d(au + bv) = adu + bdv

¢) d(Au) = Adu

d) dlu-v)=u-dv+v-du
e)dluxv)=uxdv+duxy

2.10 IMPLICIT FUNCTIONS
If F(x,y.2)isagiven function of x, y, and z, then the equation
F(x,y,2)=0 (2.52)

is a relation that may describe one or several functions z of x and y. Thus if x> +
) ]
v-+ 27— 1 =0, then

2=l =x*—=y2 or z=—1—x%-y2

both functions being defined for x? 4 y? < 1. Either function is said to be implicitly
defined by the equation x* + y* 4+ z> — 1 = 0.
Similarly, an equation

F(x,y,z,w)=0 (2.53)

may define one or more implicit functions w of x, y. z. If two such equations are
given:
=]

Fx.y,z.w)=0, G(x.y.z,w)=0, (2.54)
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