Thus Eq. (2.43) asserts that if we have successive mappings $\mathbf{u} = \mathbf{g}(\mathbf{x})$, $\mathbf{y} = \mathbf{f}(\mathbf{u})$ and hence obtain a composite mapping $\mathbf{y} = \mathbf{f}(\mathbf{g}(\mathbf{x}))$, then the matrix of the linear approximation of the composite mapping is obtained by *multiplying* the approximating matrices of the two stages. In the special case when \mathbf{f} and \mathbf{g} are linear, then we have $\mathbf{u} = B\mathbf{x}$, $\mathbf{y} = A\mathbf{u}$ for appropriate matrices A and B ($\mathbf{u}_{\mathbf{x}} = B$, $\mathbf{y}_{\mathbf{u}} = A$), and the composite mapping is $\mathbf{y} = A(B\mathbf{x}) = AB\mathbf{x}$, as in Section 1.8; thus $\mathbf{y}_{\mathbf{x}} = AB = \mathbf{y}_{\mathbf{u}}\mathbf{u}_{\mathbf{x}}$.

Case of square matrices. In the preceding analysis, let m = n = p, so that all the Jacobian matrices appearing are square and each has a determinant—the Jacobian determinant of the corresponding mapping, as in Section 2.7. For example,

$$\det \mathbf{y_u} = \begin{vmatrix} \frac{\partial y_1}{\partial u_1} & \cdots & \frac{\partial y_1}{\partial u_n} \\ \vdots & & \vdots \\ \frac{\partial y_n}{\partial u_1} & \cdots & \frac{\partial y_n}{\partial u_n} \end{vmatrix} = \frac{\partial (y_1, \dots, y_n)}{\partial (u_1, \dots, u_n)}.$$

To the equation (2.49) we can apply the rule $\det AB = \det A \det B$ (Eq. (1.60) in Section 1.9) to obtain the following very useful rule:

$$\det \mathbf{y_x} = \det \mathbf{y_u} \det \mathbf{u_x}; \tag{2.50}$$

that is.

$$\frac{\partial(y_1,\ldots,y_n)}{\partial(x_1,\ldots,x_n)} = \frac{\partial(y_1,\ldots,y_n)}{\partial(u_1,\ldots,u_n)} \frac{\partial(u_1,\ldots,u_n)}{\partial(x_1,\ldots,x_n)}.$$
 (2.51)

If, for example, n = 2, then each determinant here can be interpreted as in Section 2.7 as plus or minus the ratio of small corresponding areas, and (2.51) states roughly that

$$\frac{\Delta A_y}{\Delta A_x} = \frac{\Delta A_y}{\Delta A_u} \frac{\Delta A_u}{\Delta A_x},$$

where we have written ΔA_x for an "area element" in the x_1x_2 -plane, and similarly for ΔA_y , ΔA_u . There is a similar interpretation for n = 3, in terms of volumes, and for higher n in terms of higher-dimensional volume.

PROBLEMS

- 1. Find the Jacobian matrix $(\partial y_i/\partial x_j)$ in the form of a product of two matrices and evaluate the matrix for the given values of x_1, x_2, \ldots
 - a) $y_1 = u_1u_2 3u_1$, $y_2 = u_2^2 + 2u_1u_2 + 2u_1 u_2$; $u_1 = x_1\cos 3x_2$, $u_2 = x_1\sin 3x_2$; $x_1 = 0$, $x_2 = 0$.
 - **b)** $y_1 = u_1^2 + u_2^2 3u_1 + u_3$, $y_2 = u_1^2 u_2^2 + 2u_1 3u_3$; $u_1 = x_1x_2x_3^2$, $u_2 = x_1x_2^2x_3$, $u_3 = x_1^2x_2x_3$; $x_1 = 1$, $x_2 = 1$, $x_3 = 1$.
 - c) $y_1 = u_1 e^{u_2}$, $y_2 = u_1 e^{-u_2}$, $y_3 = u_1^2$; $u_1 = x_1^2 + x_2$, $u_2 = 2x_1^2 x_2$; $x_1 = 1$, $x_2 = 0$.
 - **d)** $y_1 = u_1^2 + \dots + u_n^2 u_1^2$, $y_2 = u_1^2 + \dots + u_n^2 u_2^2$, ..., $y_n = u_1^2 + \dots + u_n^2 u_n^2$; $u_1 = x_1^2 + x_1 x_2$, $u_2 = x_1^2 + 2x_1 x_2$, ..., $u_n = x_1^2 + n x_1 x_2$; $x_1 = 1$, $x_2 = 0$.

- **2.** a) Find $\partial(z, w)/\partial(x, y)$ for x = 1, y = 0 if $z = u^3 + 3u^2v v^3 + u^2 v^2$, $w = u^3 + v^3 2u^2$; $u = x \cos xy$, $v = x \sin xy + x^2 y^2$.
 - b) Find $\frac{\partial(x, y)}{\partial(s, t)}$ for s = 0, t = 0 if $x = (z^2 + w^2)^{1/2}$, $y = w(z^2 + w^2)^{-1/2}$; $z = (s + t + 1)^{-1}$, $w = (2s t + 1)^{-1}$.
- 3. Justify the rules, under appropriate hypotheses:
 - a) If y = f(u), u = g(v), v = h(x), then $y_x = y_u u_v v_x$.
 - **b**) $\frac{\partial(z,w)}{\partial(x,y)} = \frac{\partial(z,w)}{\partial(u,v)} \frac{\partial(u,v)}{\partial(s,t)} \frac{\partial(s,t)}{\partial(x,y)}$.
- **4.** For certain functions f(x, y), g(x, y), p(u, v), q(u, v) it is known that $f(x_0, y_0) = u_0$, $g(x_0, y_0) = v_0$ and that $f_x(x_0, y_0) = 2$, $f_y(x_0, y_0) = 3$, $g_x(x_0, y_0) = -1$, $g_y(x_0, y_0) = 5$, $p_u(u_0, v_0) = 7$, $p_v(u_0, v_0) = 1$, $q_u(u_0, v_0) = -3$, $q_v(u_0, v_0) = 2$. Let z = F(x, y) = p(f(x, y), g(x, y)), w = G(x, y) = q(f(x, y), g(x, y)) and find the Jacobian matrix of z(x, y), w(x, y) at (x_0, y_0) .
- 5. Let $u_1 = x_1 3x_2 + 2x_1x_2$, $u_2 = 2x_1 + 5x_2 3x_1x_2$. Let $\mathbf{w} = (w_1, w_2)$ be a vector function of $\mathbf{u} = (u_1, u_2)$ such that $\mathbf{w_u} = \begin{bmatrix} 2 & 11 \\ 7 & 5 \end{bmatrix}$ for $\mathbf{u} = (3, 3)$. Find the Jacobian matrix at $\mathbf{x} = (2, 1)$ for the composite function $\mathbf{w}[\mathbf{u}(\mathbf{x})]$.
- 6. Let $\mathbf{u} = \mathbf{f}(\mathbf{x})$ and $\mathbf{v} = \mathbf{g}(\mathbf{x})$ be differentiable mappings from a domain D in 3-dimensional space to 3-dimensional space. Let a and b be constant scalars. Let A be a constant 3×3 matrix. Show:
 - a) $d(\mathbf{u} + \mathbf{v}) = d\mathbf{u} + d\mathbf{v}$
 - $b) \ d(a\mathbf{u} + b\mathbf{v}) = ad\mathbf{u} + bd\mathbf{v}$
 - c) $d(A\mathbf{u}) = Ad\mathbf{u}$
 - d) $d(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot d\mathbf{v} + \mathbf{v} \cdot d\mathbf{u}$
 - e) $d(\mathbf{u} \times \mathbf{v}) = \mathbf{u} \times d\mathbf{v} + d\mathbf{u} \times \mathbf{v}$

2.10 IMPLICIT FUNCTIONS

If F(x, y, z) is a given function of x, y, and z, then the equation

$$F(x, y, z) = 0 (2.52)$$

is a relation that may describe one or several functions z of x and y. Thus if $x^2 + y^2 + z^2 - 1 = 0$, then

$$z = \sqrt{1 - x^2 - y^2}$$
 or $z = -\sqrt{1 - x^2 - y^2}$,

both functions being defined for $x^2 + y^2 \le 1$. Either function is said to be *implicitly defined* by the equation $x^2 + y^2 + z^2 - 1 = 0$.

Similarly, an equation

$$F(x, y, z, w) = 0 (2.53)$$

may define one or more implicit functions w of x, y, z. If two such equations are given:

$$F(x, y, z, w) = 0,$$
 $G(x, y, z, w) = 0,$ (2.54)