For reasons to be explained, Δx and Δy can be replaced by dx and dy in (2.20). Thus one has

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy. {(2.24)}$$

which is the customary way of writing the differential.

The preceding analysis extends at once to functions of three or more variables. For example, if w = f(x, y, u, v), then

$$dw = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy + \frac{\partial w}{\partial u} du + \frac{\partial w}{\partial v} dv.$$
 (2.25)

EXAMPLE 1 If
$$z = x^2 - y^2$$
, then $dz = 2x dx - 2y dy$.

EXAMPLE 2 If
$$w = \frac{xy}{z}$$
, then $dw = \frac{y}{z} dx + \frac{x}{z} dy - \frac{xy}{z^2} dz$.

PROBLEMS

1. Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

a)
$$z = \frac{y}{x^2 + y^2}$$

b)
$$z = y \sin xy$$

c)
$$x^3 + x^2y - x^2z + z^3 - 2 = 0$$

d)
$$z = \sqrt{e^{x+2y} - y^2}$$

e)
$$z = (x^2 + y^2)^{3/2}$$

$$f$$
) $z = \arcsin(x + 2y)$

g)
$$e^x + 2e^y - e^z - z = 0$$

h)
$$xy^2 + yz^2 + xyz = 1$$

2. A certain function f(x, y) is known to have the following values: f(0, 0) = 0, f(1, 0) = 1, f(2, 0) = 4, f(0, 1) = -2, f(1, 1) = -1, f(2, 1) = 2, f(0, 2) = -4, f(1, 2) = -3, f(2, 2) = 0. Compute approximately the derivatives $f_x(1, 1)$ and $f_y(1, 1)$.

3. Evaluate the indicated partial derivatives:

a)
$$\left(\frac{\partial u}{\partial x}\right)_{v}$$
 and $\left(\frac{\partial v}{\partial y}\right)_{x}$ if $u = x^{2} - y^{2}$, $v = x - 2y$

b)
$$\left(\frac{\partial x}{\partial u}\right)_{v}$$
 and $\left(\frac{\partial y}{\partial v}\right)_{u}$ if $x = e^{u} \cos v$, $y = e^{u} \sin v$

c)
$$\left(\frac{\partial x}{\partial u}\right)_v$$
 and $\left(\frac{\partial y}{\partial v}\right)_u$ if $u = x - 2y$, $v = u - 2y$

d)
$$\left(\frac{\partial r}{\partial x}\right)_{y}$$
 and $\left(\frac{\partial r}{\partial \theta}\right)_{x}$ if $r = \sqrt{x^2 + y^2}$, $x = r \cos \theta$

4. Find the differentials of the following functions:

a)
$$z = \frac{x}{y}$$

$$\mathbf{b}) \ z = \log \sqrt{x^2 + y^2}$$

c)
$$z = \frac{xy}{1 - x - y}$$

$$\mathbf{d}) \ z = (x - 2y)^5 e^{xy}$$

e)
$$z = \arctan \frac{y}{x}$$

f)
$$u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

5. For the given function z = f(x, y), find Δz and dz in terms of Δx and Δy at x = 1, y = 1. Compare these two functions for selected values of Δx , Δy near 0.

a)
$$z = x^2 + 2xy$$
 b) $z = \frac{x}{x+y}$

- **6.** A certain function z = f(x, y) is known to have the value f(1, 2) = 3 and derivatives $f_x(1, 2) = 2$, $f_y(1, 2) = 5$. Make "reasonable" estimates of f(1.1, 1.8), f(1.2, 1.8), and f(1.3, 1.8).
- 7. Let $z = f(x, y) = xy/(x^2 + y^2)$ except at (0, 0); let f(0, 0) = 0. Show that $\partial z/\partial x$ and $\partial z/\partial y$ exist for all (x, y) and are continuous except at (0, 0). Show by the Fundamental Lemma that z has a differential for $(x, y) \neq (0, 0)$ but not at (0, 0), since f is discontinuous at (0, 0). [It is instructive to graph the level curves of f.]

2.7 DIFFERENTIAL OF FUNCTIONS OF n VARIABLES THE JACOBIAN MATRIX

For a function of n variables

$$y = f(x_1, \dots, x_n) \tag{2.26}$$

the differential is obtained as in Section 2.6:

$$dy = f_{x_1} dx_1 + \dots + f_{x_n} dx_n. {(2.27)}$$

Thus it is a linear function of dx_1, \ldots, dx_n , whose coefficients f_{x_1}, \ldots, f_{x_n} are the partial derivatives of f at the point considered. This linear function is a close approximation to the increment Δy in the sense described in Section 2.6:

$$\Delta y = f(x_1 + dx_1, \dots, x_n + dx_n) - f(x_1, \dots, x_n)$$

= $f_{x_1} dx_1 + \dots + f_{x_n} dx_n + \epsilon_1 dx_1 + \dots + \epsilon_n dx_n$. (2.28)

where

$$\epsilon_1 \to 0, \dots, \epsilon_n \to 0$$
 as $dx_1 \to 0, \dots, dx_n \to 0$.

On occasion, one has to deal with several functions of n variables:

$$\begin{cases} y_1 = f_1(x_1, \dots, x_n), \\ \vdots \\ y_m = f_m(x_1, \dots, x_n). \end{cases}$$
 (2.29)

If these functions have continuous partial derivatives in a domain D of E^n , then all have differentials:

$$\begin{cases} dy_1 = \frac{\partial f_1}{\partial x_1} dx_1 + \dots + \frac{\partial f_1}{\partial x_n} dx_n, \\ \vdots \\ dy_m = \frac{\partial f_m}{\partial x_1} dx_1 + \dots + \frac{\partial f_m}{\partial x_n} dx_n. \end{cases}$$
(2.30)