Chapter 5 Vector Integral Calculus

Figure 530 Flux = [ v, do.

mass per unit volume, by (5.91). But this is precisely the rate at which the density is
decreasing at the point (x;, y;, z;). Hence

ap '
- = —divy = —di
a7 vV v (pu)
or

dp

- +div (ow) =0, - (592

This is the continuity equation of hydrodynamics. It expresses the conservation of
mass. Another derivation is given in Problem 9 following Section 5.15.

'PROBLEMS

1. Evaluate by the divergence theorem:

a) [[sxdydz+ ydzdx +zdxdy, where § is the sphere x? + y? + 72 = 1 and n is the
outer normal;

b) [ vado, where v = x%i + yj + z?k, n is the outer normal and § is the surface of
thecube0<x <1,0<y<1,0<z<1;

¢) [[se¥ coszdydz + e* sinzdzdx + e* cosy dx dy, with S and n as in (a);

d) [[(VF -ndo if F = x*> + y* 4 7%, n is the exterior normal, and § bounds a solid
region R;

e) [[;VF -ndoif F =2x* — y? — z2, withn and S as in (d);
f) [[{VF . ndo if F = [(x —2)> + y? + z2]7'/2 and § and n are as in (a).

2. Let S be the boundary surface of a region R in space and let n be its outer normal. Prove
the formulas:

a) V=[fixdydz= [[ydzdx = [[;zdxdy

=3 [[sxdydz + ydzdx + zdx dy,
where V is the volume of R;
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b) [fox?dydz+2xydzdx + 2xzdx dy = 6V¥,
where (X, y, Z) is the centroid of R;
¢) [fscurl v-ndo = 0, where v is an arbitrary vector field.

3. Deduce the results of Problem 9(a), (b), (c) following Section 5.10 by proving (c) first,
using the incompressibility of the flow of constant velocity v.

4. Let § be the boundary surface of a region R, with outer normal n, as in the Divergence
theorem. Let f(x, y, z)and g(x, y, z) be functions defined and continuous, with continuous
first and second derivatives, in a domain D containing R. Prove the following relations:
a) [[sfdg/dndo = [[[,fV?gdxdydz+ [[[(Vf Vg)dxdydz; y

[Hint: use the identity V - (fu) = Vf -u+ f(V -u).] ' :
b) if g is harmonic in D, then ‘

i\'_;k;\*-:u. R PR IR g

[Hint: Put f = 1in (a).]
¢) if f is harmonic in D, then

| {ff%dq=/Rf \VfI?dx dy dz;

d) if f is harmonic in D and f = Oon S, then f = 0in R [cf. the last paragraph before
the remarks at the end of Section 4.3];

e) if f and g are harmonic in D and f = g on §, then f = g in R; [Hint: Use (d).]
f) if f is harmonic in D and 3f/3n = Q on §, then f is constantin R; : A
g) if f and g are harmonic in D and 3f/3n = dg/dn on S, then f = g + const in R;

h) if f and g are harmonic in R, and

-—.-:—-f-'-h' —=—g+h0ns| h-:h(x'y!z)‘
on an

then
f=ginR;
i) if f and g both satisfy the same Poisson equation in R,
V3f=—4nh, Vlg=—4nxh, h=h(x,y.2)
and f = gon §, then
f=ginR,

D[ (FE -gh)do = [[[(f Vg - gV f)dxdydz; . . *,i
[Hint: Usc (a).] : T

'K) if f and g are harmonic in R, then
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1) if f and g satisfy the equations: _
Vif=hf, Vg=hg, h=hxy2),
in R, then

Remark Parts (a) and ( j) are known as Green’s first and second identities, respectively.

5. Let S and R be as in Problem 4. Prove, under appropriate continuity assumptions:

a) [fgfn-ida = [[f, L av.
[Hint: Apply the Dlvergence theorem.]

b) [fsfndo = [ff, VfdV.

[Hint: These are integrals of vectors as in Section 4.5. Uﬁe (a) to show that the
x-components of both sides are equal and, similarly, that the y- and z-components

are equal.]

o) [fgvxi-ndo=[[f,curlv.idV.
[Hint: Apply the Divergence theorem and then evaluate div (v x i) by (3.35).]

d) [[inxvdo = [[f,curl vdV.

[Hint: These are vector integrals. Use (c) to show that the x-components of both sides

are equal and, similarly, that the y- and z-components are equal.]

5.12 STOKES’S THEOREM

It was seen in Section 5.5 that Green’s theorem can be written in the form

%urds = ff curl.udxdy.
c R

This suggests that for any simple closed plane curve C in space (Fig. 5.31),

fuT ds = [f curl, udo, | (5.93)
C s

where n is normal to the plane in which C lies, S is the planar surface bounded by
C, and the direction of C is positive in terms of the orientation of S determined by n.

Figure 5.31 Case of Stokes’s theorem.
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