312

Advanced Calculus, Fifth Edition

One can also define this as the limit of a sum, as for the line integral. For the surface
z = f(x,y), one finds

o .
do =+ ~Zi- ——z~j+k) dx dy.
0x ay

This can also be written:

do =n|secy|dxdy = dxdy.

IkI

From this and the corresponding expressions for surfaces x = g(y, z), y = h(x, 2),
one obtains the formulas

v-n v-n
ff(v-n)dcr:ff In-kldxdy=ffm f —dzdx (5.83)
5 ) Rx.\- R."-‘-

For the surfaces in parametric form we have

), dz,x). A, y)
do = :t(a(u, v)i RS 5. v)j+ 3, v)k) dudv

- or, more concisely, by (5.82),

do=+P; xPy)dudv.

The formal properties of line and surface integrals are analogous to those for line
integrals in the plane (Section 5.3) and need no special discussion here. Furthermore,
the definitions and properties of line and surface integrals carry over without change
to piecewise smooth curves and surfaces, provided that the surfaces are orientable.

PROBLEMS

1. Evaluate the line integrals:
a) f((llgoz)”)zdx + xdy + ydz, where C is the curve x = cost, y = sint, z = t,

0 <t <2m, ;
b) f{(1203 12)) 2dx — xzdy + y? dz on the straight line joining the two points;
0 f‘“ 0,v2)

1.1.0) X yzds on the curve x = cost, y =cost, z = J2sint, 0<t < -’5;
d) [ urds, where w = 2xy?zi+2x%yzj+x2y?k and C is the circle x = cost, y =
sint, z = 2, directed by increasing ¢;
e) fC urds, whereu = curlv, v = yzi + zzj + x2Kk, and C is the path x = 2t + 1,
y =12, z=1413 0<1t < 1,directed by increasing .
2. If u = grad F in a domain D, then show that

a) f&T ):T ;:) urds = F(x, y2, 22) — F(x1, y1, 21), where the integral is along ény path

in D joining the two points;
b) fC ur ds = 0 on any closed path in D.
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3. Let a wire be given as a curve C in space. Let its density (mass per unit length) be
§ = 8(x,y,2), where (x, y, z) is a variable point in C. Justify the following formulas:

a) length of wire = f.ds =L
b) mass of wire = [.dds = M;
¢) center of mass of the wire i1s (¥, ¥, Z), where

Mi:fxﬁds, My:[yads, ME:fzSds;

c c c
d) moment of inertia of the wire about the z axis is
= f(ﬂ + y?) 8 ds.
c

4. Formulate and justify the formulas analogous to those of Problem 3 for the surface area,
mass, center of mass, and moment of inertia of a thin curved sheet of metal forming a
surface S in space.

5. Evaluate the following surface integrals:
a) [[¢xdydz + ydzdx + zdxdy, where S is the tnangle with vertices (1, 0, 0),
(0, 1, 0), (0, 0, 1) and the normal points away from (0, 0, 0);
b) [f;dydz + dzdx + dxdy, where S is the hemisphere z =+/1 ~ x2 — y2, x? +
y2 < 1, and the normal is the upper normal;
¢) [[g(xcosa + ycos B + zcosy)do for the surface of part (b);
d) [f;x*zdo, where S is the cylindrical surface x2 + y> =1, 0 <z < 1.
6. Evaluate the surface integrals of Problem 5, using the parametric representation:
a)x-_:-.u+v,y=u—u,z=l—2u .
b) x = sinuéosv. y =slnusinv, z =cosu
¢) same as (b)
d) x=cosu, y=sinu, z=1v
7. Evaluate the surface integrals:

a) [[;w-ndo, if w= xy?zi— 2x>j + yz?K, § is the surface z = 1 — x* — y?, x* +
y% < 1, and n is upper;

b) [[¢w-ndo,if w = i+ 2j+ 3k, S is the surface x = e“cosv, y = e“sinv,
z=cosvsinv, 0 <u <1, 0 <v < /2 and nis given by (5.82) with the + sign; >

) ffs " do if w = x?y*z and S and n are as in (a);

[l

d) [f; 32 do if w = x? ~ y? + z% and S and n are as in (b);

e) [[s curiu ndo if u = yzi — xzj + xzk, S is the triangle with vertices (1, 2, 8),
(3,1,9), (2, 1, 7) and n is upper.

8. a) Let a surface S: z = f(x, y) be defined by an implicit equahon F(x,y, z) 0. Show+
that the surface integral [ [ H do over S becomes

[N+ (5)+ (&) gyeeer

provided that 95 5 0. 3
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b) Prove that for the surface of part (a) withm = VF/|VF|,

[[wwao = [ [ 9F) o axay.
2 |5z

s
¢) Prove (5.81).
d) Prove that (5.81) reduces to (5.80) whenx = u, y = v,z = f(u, v).

9. Let S be an oriented surface in space that is planar; that is, § lies in a plane. With S one
can associate the vector S, which has the direction of the normal chosen on § and has a
length equal to the area of §.

a) Show that if Sy, S5, S5, S4 are the faces of a tetrahedron, oriented so that the normal
is the exterior normal, then

S148+8348;=0.

(Hint: Let S; = Aim; (A; > O)fori = 1,...,4andletS; + --- 4+ S4 = b. Let py
be the foot of the altitude on face S| and join py to the vertices of S, to form three
triangles of areas A3, ..., Ay4. Show that, for proper numbering, A;; = £A;n; -ny,
with + or — according asn; -n; > Qor < O,and A;; =0ifn; -n; =0(j =2, 3,4).
Hence deduce thatb - n; = Ofor j = 2,3,4and thusb-b = 0.]

b) Show that the result of (a) extends to an arbitrary convex polyhedron with faces
S1, ..., Su, that is, that

S1+8:+---+8, =0,
when the orientation is that of the exterior normal.
¢) Using the result of (b), indicate a reasoning to justify the relation

[[ a0

for any convex closed surface § (such as the surface of a sphere or ellipsoid), provided
that v is a constant vector.

d) Apply the result of (b) to a triangular prism whose edges represent the vectors a, b,
a + b, ¢ to prove the distributive law (Equation (1.19)

cx(a+b)y=cxa+cxhb

for the vector product. This is the method used by Gibbs (cf. the book by Gibbs listed
at the end of this chapter).

S5.11 THE DIVERGENCE THEOREM

It was pointed out in Section 5.5 that Green’s theorem can be written in the form

fv,,ds = ffdivvdxdy. . .4
C R :

The following generalization thus appears natural:

ff Vpdo = f[fdivvdxdydz, %
s R

where § is a surface forming the complete boundary of a bounded closed region
R in space and n is the outer normal of §, that is, the one pointing away from R.




