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Advanced Calculus, Fifth Edition -

Finally,

by Leibnitz’s Rule. Since w =1¢, dw/dt =1 and the third term is accounted for.

d

PROBLEMS

1.

ﬁ§=—3-f f(x.w)dx=f I (e wydx
w  dw J, y dw

Obtain the indicated derivatives in the form of integrals:

a) a(.!?f;r Coij”dx
c) f;ff]og(xu)dx

Obtain the indicated derivatives:
a) £ [} i2dt

c) ;frft- ff‘ log (1 + x?)dx

2 2
b) ;;frfl T dx

d" 2 sinx
fl x&yd

b) 4 J1 sin(x2)dx
d) L[ e dr

Prove the following:
COS o

a) &L [C*%og (x+a)dx = log

COS + o

€038 +¢ _[sine log (cos a+a) + cos  log (sin a+a));

b) T f{f" usinuxdx = 0;

C}E'—f eV dx = 2ye — &' nyvzxe*"l"ldx

a) Evaluate fo x" log x dx by differentiating both sides of the equation fo x"dx =

1
T with respectton (n > —1).

b) Evaluate ; > x"e~9% dx by repeated differentiation of fom

¢) Evaluate [;° 7—"’—1F by repeated differentiation of [;* 2 et

[In(b) and (c) the improper integrals are of a type to which Lelbmtz s Ruleis applicable,
as is shown in Chapter 6. The result of (a) can be explicitly verified.]

P dx (a > 0).

. Leibnitz’s Rule extends to indefinite integrals in the form:

ad d
a./\f(x,f)dX'i'C:faf(x&r)dx . (a)

There is still an arbitrary constant in the equation-because we are evaluating an indefinite
integral. Thus from the equation

ef_l'
fe”‘ dx = - +C,

one deduces that i g

f.xe” dx = e'* (; - zlz) +C).

a) By differentiating n times, prove that

dx (=t et /1
f x2+a)"  (n—1)! da""! (ﬁarctan ﬁ) +C (a> 0)

b) Prove [ x" cosaxdx = - (S09X) 4 C,.n = 4,8, 12,. %
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¢) Let ff(x,r)dx = F(x,t) + C, so that dF/dx = f(x,t). Show that Eq. (a) is
equivalent to the statement ’

3?*F  3*F
dx dr  dtdx’
6. It is known that .
2 2 ;
cos f 1—-+v1-=
f Y =g
o 1 —acosf av'l — a2

where a is a constant, 0 < a < 1. (This can be established as in elementary calculus with
the aid of the substitution ¢ = tan (6/2).) Use this result to prove that

2 1 ./l_ 2
f log (1 — a cos#)d6 = 2 log %
0

[Hint: Call the left-hand side of the new equation g(a), find g’(a), and integrate to ﬁn&
g(a) = 2w log (1 4++/1 —a?)+ C. Use continuity of g fora = 0 and g(0) = Oto find C.)

7. Consider a 1-dimensional fluid motion, the flow taking place along the x axis. Let v =
v(x, 1) be the velocity at position x at time ¢, so that if x is the coordinate of a fluid particle
at time ¢, one has dx/dt = v. If f(x,t) is any scalar associated with the flow (velocity,
acceleration, density, ... ), one can study the variation of f following the flow with the
aid of the Stokes derivative:

Df dfdx Oof

Di ~ axdr | at
[see Problem 12 following Section 2.8]. A picce of the fluid occupying an interval ag <
x < bp when t = 0 will occupy an interval a(f) < x < b(t) at time ¢, where f,—‘: =
v(a, 1), 9 = v(b, 1). The integral

b(1)
F(t)y = f(x,t)dx
arlr)

1s then an integral of f over a definite piece of the fluid, whose position varies with time;
if f is density, this is the mass of the piece. Show that

dF _ b(1) af b(r) Df dv
ar fam [5““‘ 0+ g "’] ax= [ (“5: +f zze)‘”'

This is generalized to arbitrary 3-dimensional flows in Section 5.15.
8. Let f(o) be continuous for 0 < o < 2x. Let
2m

1
u(r,6) = 27 J, f('m)l+r2~~2rcos(6’—c1!)dalr

for r < 1, r and @ being polar coordinates. Show that u is harmonic for r < 1. This is
the Poisson integral formula. [Hint: Write w = 1 + r2 —2rcos(6 — a) and v(ir,0,a) =
(1 - rz)w L. Use Lelbmtz S Rule to conclude that V?u = (27)~! fo fle)V3vae,

where Vv = Vpr +r~%vge + r~'v, as in Eq. (2.138) in Section 2.17. Show that v, =
—2rw™! — (1 = r»)w%w, etc. and finally

Vv = 4w + (5r — r Hww, + (r* ~ D(w™w,, - 2w w?

1 —r¥

a4 =2.=2 -3
+r 2wl weg — 2r 2w w}).

Multiply both sides by w3 inserl the proper expressmm for w, w,, ... on the right and
collect terms in powers of r (%, r°, .. .) to verify that r2w?V 2y = Oand hence V2u = 0.]



