the correspondence must be one-to-one. From the level curves, one can follow the variation of u and v on the boundary of R_{xy} and thereby determine the boundary of R_{uv} . It can be shown that if R_{xy} and R_{uv} are each bounded by a single closed curve, as in Fig. 4.8, if the correspondence between (x, y) and (u, v) is one-to-one on these boundary curves, and $J \neq 0$ in R_{uv} , then the correspondence is necessarily one-to-one in all of R_{xy} and R_{uv} . For a further discussion of this point, the reader is referred to Section 5.14. Actually, the conditions that the correspondence be one-to-one and that $J \neq 0$ are not vital for the theorem. It is shown in Section 5.14 that (4.61) can be written in a different form that covers the more general cases.

PROBLEMS

- 1. Evaluate with the aid of the substitution indicated:
 - a) $\int_0^1 (1-x^2)^{3/2} dx$, $x = \sin \theta$

b)
$$\int_0^1 \frac{1}{1+\sqrt{1+x}} dx$$
, $x = u^2 - 1$

c)
$$\int_0^{\pi/2} \frac{1}{\sin x + \cos x + 2} dx$$
, $t = \tan(x/2)$

d)
$$\int_0^{\pi/4} \frac{x \cos x (x \sin x - \cos x)}{1 + x \cos x} dx$$
, $t = 1 + x \cos x$

2. Prove the formula

$$\int_{u_1}^{u_2} \phi'(u) du = \phi(u_2) - \phi(u_1)$$

as a special case of (4.60).

- 3. a) Prove that (4.60) remains valid for improper integrals, that is, if f(x) is continuous for $x_1 \le x < x_2$, x(u) is defined and has a continuous derivative for $u_1 \le u < u_2$, with $x(u_1) = x_1$, $\lim_{u \to u_2} x(u) = x_2$, and f[x(u)] is continuous for $u_1 \le u < u_2$. [Hint: Use the fact that (4.60) holds with u_2 and u_2 replaced by u_0 and $u_0 = u_0$, $u_1 < u_0 < u_2$. Then let u_0 approach u_2 . One concludes that if either side of the equation has a limit, then the other side has a limit also and the limits are equal. Note that u_2 or u_2 or both may be ∞ .]
 - b) Evaluate $\int_1^\infty \frac{1}{x^2} \sinh \frac{1}{x} dx$ by setting $u = \frac{1}{x}$.
 - c) Evaluate $\int_0^\infty (1 \tanh x) dx$ by setting $u = \tanh x$.
- 4. Evaluate the following integrals with the aid of the substitution suggested:
 - a) $\iint_{R_{xy}} (1-x^2-y^2) dx dy$, where R_{xy} is the region $x^2+y^2 \le 1$, using $x = r \cos \theta$, $y = r \sin \theta$:
 - **b)** $\iint_R \frac{y\sqrt{x^2+y^2}}{x} dx dy, \text{ where } R \text{ is the region } 1 \le x \le 2, 0 \le y \le x, \text{ using } x = r \cos \theta, \\ y = r \sin \theta;$
 - c) $\iint_{R_{xy}} (x-y)^2 \sin^2(x+y) dx dy$, where R_{xy} is the parallelogram with successive vertices $(\pi, 0), (2\pi, \pi), (\pi, 2\pi), (0, \pi)$, using u = x y, v = x + y;
 - d) $\iint_R \frac{(x-y)^2}{1+x+y} dx dy$, where R is the trapezoidal region bounded by the lines x+y=1, x+y=2 in the first quadrant, using u=1+x+y, v=x-y;
 - e) $\iint_R \sqrt{5x^2 + 2xy + 2y^2} \, dx \, dy$ over the region R bounded by the ellipse $5x^2 + 2xy + 2y^2 = 1$, using x = u + v, y = -2u + v.

5. Verify that the transformation $u = e^x \cos y$, $v = e^x \sin y$ defines a one-to-one mapping of the rectangle R_{xy} : $0 \le x \le 1$, $0 \le y \le \pi/2$ onto a region of the *uv*-plane and express as an iterated integral in u, v the integral

$$\iint\limits_{R_{YY}} \frac{e^{2x}}{1 + e^{4x}\cos^2 y \sin^2 y} \, dx \, dy.$$

6. Verify that the transformation

$$u = 2xy, \qquad v = x^2 - y^2$$

defines a one-to-one mapping of the square $0 \le x \le 1$, $0 \le y \le 1$ onto a region of the uv-plane. Express the integral

$$\iint_{R} \sqrt[3]{x^4 - 6x^2y^2 + y^4} \, dx \, dy$$

over the square as an iterated integral in u and v.

7. Transform the integrals given, using the substitutions indicated:

a)
$$\int_0^1 \int_0^x \log(1+x^2+y^2) \, dy \, dx$$
, $x = u + v$, $y = u - v$

b)
$$\int_0^1 \int_{1-x}^{1+x} \sqrt{1+x^2y^2} \, dy \, dx$$
, $x = u$, $y = u + v$

8. Let R_{uv} be the square $0 \le u \le 1$, $0 \le v \le 1$. Show that the given equations define a one-to-one mapping of R_{uv} onto R_{xy} and graph R_{xy} :

a)
$$x = u + u^2$$
, $y = e^v$

b)
$$x = ue^v$$
, $y = e^v$

c)
$$x = 2u - v^2$$
, $y = v + uv^4$

d)
$$x = 5u - u^2 + v^2$$
, $y = 5v + 10uv$

- **9.** Verify the correctness of (4.67) as a special case of (4.66). Show the geometric meaning of the volume element $r \Delta r \Delta \theta \Delta z$.
- 10. Verify the correctness of (4.68) as a special case of (4.66). Show the geometric meaning of the volume element $\rho^2 \sin \phi \Delta \rho \Delta \phi \Delta \theta$.
- 11. Transform to cylindrical coordinates but do not evaluate:

a)
$$\iiint_{R_{xyz}} x^2 y \, dx \, dy \, dz$$
, where R_{xyz} is the region $x^2 + y^2 \le 1$, $0 \le z \le 1$;

b)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{1+x+y} (x^2-y^2) \, dz \, dy \, dx$$
.

12. Transform to spherical coordinates but do not evaluate:

a)
$$\iiint_{R_{xyz}} x^2 y \, dx \, dy \, dz$$
, where R_{xyz} is the sphere: $x^2 + y^2 + z^2 \le a^2$;

b)
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-\sqrt{x^2+y^2}}^{1} (x^2+y^2+z^2) \, dz \, dy \, dx$$
.

4.7 ARC LENGTH AND SURFACE AREA

In elementary calculus it is shown that a curve y = f(x), $a \le x \le b$, has length

$$s = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \tag{4.69}$$

and that if the curve is given parametrically by equations x = x(t), y = y(t) for $t_1 \le t \le t_2$, then it has length

$$s = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$
 (4.70)