$a \le t \le b$. We then define:

$$\int_{a}^{b} \mathbf{F}(t) dt = \int_{a}^{b} f(t) dt \, \mathbf{i} + \int_{a}^{b} g(t) dt \, \mathbf{j} + \int_{a}^{b} h(t) dt \, \mathbf{k}. \tag{4.57}$$

This integral can be interpreted as the limit of a sum:

$$\lim_{h\to 0}\sum_{i=1}^n \Delta_i t \mathbf{F}(t_i^*)$$

as in (4.1). The limit is a vector c and existence of the limit means that given $\epsilon > 0$, there is a $\delta > 0$ such that, for $0 < h < \delta$,

$$\left|\sum_{i=1}^n \Delta_i t \mathbf{F}(t_i^*) - \mathbf{c}\right| < \epsilon.$$

The properties $(4.3), \ldots, (4.6), (4.10), (4.16)$ all extend at once to the integral of $\mathbf{F}(t)$, where the absolute value |f(x)| is replaced by the vector norm $|\mathbf{F}(t)|$.

One can also integrate vector functions of several variables. For example, if

$$\mathbf{F}(x, y, z) = f(x, y, z)\mathbf{i} + g(x, y, z)\mathbf{j} + h(x, y, z)\mathbf{k}$$

is continuous on the bounded closed region R, suitable for triple integrals, then

$$\iiint_{R} \mathbf{F}(x, y, z) dV = \iiint_{R} f(x, y, z) dV \mathbf{i} + \iiint_{R} g(x, y, z) dV \mathbf{j}$$
$$+ \iiint_{R} h(x, y, z) dV \mathbf{k}. \tag{4.58}$$

This integral can also be interpreted as the limit of a sum, and the familiar properties of triple integrals carry over.

PROBLEMS

- 1. Evaluate the following integrals:
 - a) $\iint_R (x^2 + y^2) dx dy$, where R is the triangle with vertices (0, 0), (1, 0), (1, 1);
 - **b)** $\iiint_R u^2 v^2 w \, du \, dv \, dw$, where R is the region: $u^2 + v^2 \le 1$, $0 \le w \le 1$;
 - c) $\iint_R r^3 \cos \theta \, dr \, d\theta$, where R is the region: $1 \le r \le 2$, $\frac{\pi}{4} \le \theta \le \pi$;
 - d) $\iiint_R (x+z) dV$, where R is the tetrahedron with vertices (0,0,0), (1,0,0), (0,2,0), (0,0,3).
- 2. Find the volume of the solid region below the given surface z = f(x, y) for (x, y) in the region R defined by the given inequalities:
 - a) $z = e^x \cos y$, $0 \le x \le 1$, $0 \le y \le \pi/2$
 - **b)** $z = x^2 e^{-x-y}$, $0 \le x \le 1$, $0 \le y \le 2$

c)
$$z = x^2y$$
, $0 \le x \le 1$, $x + 1 \le y \le x + 2$

d)
$$z = \sqrt{x^2 - y^2}$$
, $x^2 - y^2 \ge 0$, $0 \le x \le 1$

- 3. For each of the following choice of R, represent $\iint f(x, y) dA$ over R as an iterated integral of both forms (4.33) and (4.34):
 - a) $1 \le x \le 2$, $1 x \le y \le 1 + x$
 - **b**) $y^2 + x(x-1) \le 0$
- 4. Evaluate $\iiint_R f(x, y, z) dV$ for the following choices of f and R:
 - a) $f(x, y, z) = \sqrt{x + y + z}$, R the cube of vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1).
 - **b)** $f(x, y, z) = x^2 + z^2$, R the pyramid of vertices $(\pm 1, \pm 1, 0)$ and (0, 0, 1).
- 5. For each of the following iterated integrals, find the region R and write the integral in the other form (interchanging the order of integration):
 - a) $\int_{1/2}^{1} \int_{0}^{1-x} f(x, y) \, dy \, dx$
 - **b)** $\int_0^1 \int_0^{\sqrt{1-x^2}} f(x, y) \, dy \, dx$

4.6

- c) $\int_0^1 \int_{y-1}^0 f(x, y) dx dy$
- **d**) $\int_0^1 \int_{1-x}^{1+x} f(x, y) \, dy \, dx$
- **6.** Express the following in terms of multiple integrals and reduce to iterated integrals, but do not evaluate:
 - a) the mass of a sphere whose density is proportional to the distance from one diametral plane;
 - b) the coordinates of the center of mass of the sphere of part (a);
 - c) the moment of inertia about the x-axis of the solid filling the region $0 \le z \le 1 x^2 y^2$, $0 \le x \le 1$, $0 \le y \le 1 x$ and having density proportional to xy.
- 7. The moment of inertia of a solid about an arbitrary line L is defined as

$$I_L = \iiint\limits_{R} d^2 f(x, y, z) \, dx \, dy \, dz,$$

where f is density and d is the distance from a general point (x, y, z) of the solid to the line L. Prove the Parallel Axis theorem:

$$I_L = I_{\overline{L}} + Mh^2,$$

where \overline{L} is a line parallel to L through the center of mass, M is the mass, and h is the distance between L and \overline{L} . (Hint: Take \overline{L} to be the z axis.)

8. Let L be a line through the origin O with direction cosines l, m, n. Prove that

$$I_L = I_x l^2 + I_y m^2 + I_z n^2 - 2I_{xy} lm - 2I_{yz} mn - 2I_{zx} ln$$

where

$$I_{xy} = \iiint\limits_R xyf(x, y, z) dx dy dz, \qquad I_{yz} = \iiint\limits_R yzf...$$

The new integrals are called products of inertia. The locus

$$I_x x^2 + I_y y^2 + I_z z^2 - 2(I_{xy} xy + I_{yz} yz + I_{zx} zx) = 1$$

is an ellipsoid called the ellipsoid of inertia.

- osn.
- 9. It is shown in geometry that the medians of a triangle meet at a point, which is the centroid of the triangle, and that the lines from the vertices of a tetrahedron to the centroids of the opposite faces meet at a point which is 3/4 of the way from each vertex to the opposite face along the lines described. Show that this last point is the centroid of the tetrahedron. [Hint: Take the base of the tetrahedron to be in the xy-plane and show that $\bar{z} = h/4$, if h is the z-coordinate of the vertex not in the xy-plane.]
- 10. Evaluate the integrals:
 - a) $\int_0^1 \mathbf{F}(t) dt$, if $\mathbf{F}(t) = t^2 \mathbf{i} e^t \mathbf{j} + \frac{1}{1+t} \mathbf{k}$.
 - **b)** $\iint_R \mathbf{F}(x, y) dA$, if R is the triangular region enclosed by the triangle of vertices $(0, 0), (1, 0), \text{ and } (0, 1) \text{ and } \mathbf{F}(x, y) = x^2 y \mathbf{i} + x y^2 \mathbf{j}$.
- 11. Let F(t) be continuous for $a \le t \le b$ and let q be a constant vector. Prove:
 - a) $\int_a^b \mathbf{q} \cdot \mathbf{F}(t) dt = \mathbf{q} \cdot \int_a^b \mathbf{F}(t) dt$
 - **b**) $\int_a^b \mathbf{q} \times \mathbf{F}(t) dt = \mathbf{q} \times \int_a^b \mathbf{F}(t) dt$

4.6 CHANGE OF VARIABLES IN INTEGRALS

For functions of one variable the chain rule

$$\frac{dF}{du} = \frac{dF}{dx}\frac{dx}{du} \tag{4.59}$$

at once gives the rule for change of variable in a definite integral:

$$\int_{x_1}^{x_2} f(x) dx = \int_{u_1}^{u_2} f[x(u)] \frac{dx}{du} du.$$
 (4.60)

Here f(x) is assumed to be continuous at least for $x_1 \le x \le x_2$, x = x(u) is defined for $u_1 \le u \le u_2$ and has a continuous derivative, with $x_1 = x(u_1)$, $x_2 = x(u_2)$, and f[x(u)] is continuous for $u_1 \le u \le u_2$.

Proof. If F(x) is an indefinite integral of f(x), then

$$\int_{x_1}^{x_2} f(x) \, dx = F(x_2) - F(x_1).$$

But F[x(u)] is then an indefinite integral of $f[x(u)]\frac{dx}{du}$, for (4.59) gives

$$\frac{dF}{du} = \frac{dF}{dx}\frac{dx}{du} = f(x)\frac{dx}{du} = f[x(u)]\frac{dx}{du},$$

when x is expressed in terms of u. Thus the integral on the right of (4.60) is

$$F[x(u_2)] - F[x(u_1)] = F(x_2) - F(x_1).$$

Since this is the same as the value of the left-hand side of (4.60), the rule is established.

It is worth noting that the emphasis in (4.60) is on the function x(u) rather than on its inverse u = u(x). Such an inverse will exist only when x is a steadily increasing function of u or a steadily decreasing function of u. This is not required for (4.60). In fact, the function x(u) can take on values outside the interval $x_1 \le x \le x_2$, as illustrated in Fig. 4.7. However, f[x(u)] must remain continuous for $u_1 \le u \le u_2$.