PROBLEMS

- 1. Give several examples of functions of several variables occurring in geometry (area and volume formulas, law of cosines, and so on).
- 2. Represent the following functions by first sketching a surface, and second, drawing level curves:

a)
$$z = 3 - x - 3y$$

b)
$$z = x^2 + y^2 + 1$$

c)
$$z = \sin(x + y)$$

d)
$$z = e^{\lambda y}$$

3. Analyze the following functions by describing their level surfaces in space:

a)
$$u = x^2 + y^2 + z^2$$

b)
$$u = x + y + z$$

c)
$$w = x^2 + y^2 - z$$

d)
$$w = x^2 + y^2$$

4. Determine the values of the following limits, wherever the limit exists:

a)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 - y^2}{1 + x^2 + y^2}$$

b)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x}{x^2 + y^2}$$

c)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{(1+y^2)\sin x}{x}$$

d)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{1+x-y}{x^2+y^2}$$

5. Show that the following functions are discontinuous at (0, 0) and graph the corresponding surfaces:¹

a)
$$z = \frac{x}{x - y}$$

b)
$$z = \log(x^2 + y^2)$$

6. Describe the sets in which the following functions are defined:

a)
$$z = e^{x-y}$$

b)
$$z = \log(x^2 + y^2 - 1)$$

c)
$$z = \sqrt{1 - x^2 - y^2}$$

d)
$$u = \frac{xy}{x}$$

7. Prove the theorem: Let f(x, y) be defined in domain D and continuous at the point (x, y_1) of D. If $f(x_1, y_1) > 0$, then there is a neighborhood of (x_1, y_1) in which $f(x, y) > \frac{1}{2}f(x_1, y_1) > 0$. [Hint: Use $\epsilon = \frac{1}{2}f(x_1, y_1)$ in the definition of continuity.]

- 8. Let D be a domain in the plane. Show that D cannot consist of two open sets E_1 , E_2 with no point in common. [Hint: Suppose the contrary and choose point P in E_1 and point Q in E_2 ; join these points by a broken line in D. Regard this line as a path from P to Q and let s be distance from P along the path, so that the path is given by continuous functions x = x(s), y = y(s), $0 \le s \le L$, with s = 0 at P and s = L at Q. Let f(s) = -1 if (x(s), y(s)) is in E_1 and let f(s) = 1 if (x(s), y(s)) is in E_2 . Show that f(s) is continuous for $0 \le s \le L$. Now apply the intermediate value theorem: If f(x) is continuous for $a \le x \le b$ and $a \le b \le c$ on the following Section 2.23).]
- **9.** Prove the theorem: Let f(x, y) be continuous in domain D. Let f(x, y) be positive for at least one point of D and negative for at least one point of D. Then f(x, y) = 0 for at least one point of D. [Hint: Use Problem 7 to conclude that the set A where f(x, y) > 0 and the set B where f(x, y) < 0 are open. If $f(x, y) \neq 0$ in D, then D is formed of the two nonoverlapping open sets A and B; this is not possible by Problem 8.]

Remark This result extends the intermediate value theorem to functions of two variables.

In this book, $\log x$ denotes the natural logarithm of x.