1090 CHAPTER 16 VECTOR CALCULUS

4. $\oint_C x^2 y^2 dx + xy dy$, *C* consists of the arc of the parabola $y = x^2$ from (0, 0) to (1, 1) and the line segments from (1, 1) to (0, 1) and from (0, 1) to (0, 0)

5–10 Use Green's Theorem to evaluate the line integral along the given positively oriented curve.

- **5.** $\int_C xy^2 dx + 2x^2 y dy$, *C* is the triangle with vertices (0, 0), (2, 2), and (2, 4)
- **6.** $\int_C \cos y \, dx + x^2 \sin y \, dy,$ C is the rectangle with vertices (0, 0), (5, 0), (5, 2), and (0, 2)
- 7. $\int_{C} (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy,$ C is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$
- **8.** $\int_C y^4 dx + 2xy^3 dy$, *C* is the ellipse $x^2 + 2y^2 = 2$
- **9.** $\int_C y^3 dx x^3 dy$, *C* is the circle $x^2 + y^2 = 4$
- **10.** $\int_{C} (1 y^3) dx + (x^3 + e^{y^2}) dy, \quad C \text{ is the boundary of the region between the circles } x^2 + y^2 = 4 \text{ and } x^2 + y^2 = 9$

11–14 Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$. (Check the orientation of the curve before applying the theorem.)

- **11.** $\mathbf{F}(x, y) = \langle y \cos x xy \sin x, xy + x \cos x \rangle$, *C* is the triangle from (0, 0) to (0, 4) to (2, 0) to (0, 0)
- 12. $\mathbf{F}(x, y) = \langle e^{-x} + y^2, e^{-y} + x^2 \rangle$, *C* consists of the arc of the curve $y = \cos x$ from $(-\pi/2, 0)$ to $(\pi/2, 0)$ and the line segment from $(\pi/2, 0)$ to $(-\pi/2, 0)$
- **13.** $\mathbf{F}(x, y) = \langle y \cos y, x \sin y \rangle$, C is the circle $(x - 3)^2 + (y + 4)^2 = 4$ oriented clockwise
- **14.** $\mathbf{F}(x, y) = \langle \sqrt{x^2 + 1}, \tan^{-1} x \rangle$, *C* is the triangle from (0, 0) to (1, 1) to (0, 1) to (0, 0)
- **CAS 15–16** Verify Green's Theorem by using a computer algebra system to evaluate both the line integral and the double integral.
 - **15.** $P(x, y) = y^2 e^x$, $Q(x, y) = x^2 e^y$, *C* consists of the line segment from (-1, 1) to (1, 1) followed by the arc of the parabola $y = 2 - x^2$ from (1, 1) to (-1, 1)
 - **16.** $P(x, y) = 2x x^3 y^5$, $Q(x, y) = x^3 y^8$, C is the ellipse $4x^2 + y^2 = 4$
 - 17. Use Green's Theorem to find the work done by the force F(x, y) = x(x + y) i + xy² j in moving a particle from the origin along the *x*-axis to (1, 0), then along the line segment to (0, 1), and then back to the origin along the *y*-axis.
 - **18.** A particle starts at the point (-2, 0), moves along the *x*-axis to (2, 0), and then along the semicircle $y = \sqrt{4 x^2}$ to the starting point. Use Green's Theorem to find the work done on this particle by the force field $\mathbf{F}(x, y) = \langle x, x^3 + 3xy^2 \rangle$.

- **19.** Use one of the formulas in 5 to find the area under one arch of the cycloid $x = t \sin t$, $y = 1 \cos t$.
- 20. If a circle C with radius 1 rolls along the outside of the circle x² + y² = 16, a fixed point P on C traces out a curve called an *epicycloid*, with parametric equations x = 5 cos t cos 5t, y = 5 sin t sin 5t. Graph the epicycloid and use 5 to find the area it encloses.
 - **21.** (a) If *C* is the line segment connecting the point (x_1, y_1) to the point (x_2, y_2) , show that

$$\int_C x \, dy - y \, dx = x_1 y_2 - x_2 y_1$$

(b) If the vertices of a polygon, in counterclockwise order, are (x1, y1), (x2, y2), ..., (xn, yn), show that the area of the polygon is

$$A = \frac{1}{2} [(x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + \cdots + (x_{n-1}y_n - x_ny_{n-1}) + (x_ny_1 - x_1y_n)]$$

- (c) Find the area of the pentagon with vertices (0, 0), (2, 1), (1, 3), (0, 2), and (-1, 1).
- 22. Let D be a region bounded by a simple closed path C in the xy-plane. Use Green's Theorem to prove that the coordinates of the centroid (x, y) of D are

$$\overline{x} = \frac{1}{2A} \oint_C x^2 dy \qquad \overline{y} = -\frac{1}{2A} \oint_C y^2 dx$$

where A is the area of D.

- **23.** Use Exercise 22 to find the centroid of a quarter-circular region of radius *a*.
- **24.** Use Exercise 22 to find the centroid of the triangle with vertices (0, 0), (a, 0), and (a, b), where a > 0 and b > 0.
- 25. A plane lamina with constant density ρ(x, y) = ρ occupies a region in the *xy*-plane bounded by a simple closed path *C*. Show that its moments of inertia about the axes are

$$I_x = -\frac{\rho}{3} \oint_C y^3 dx \qquad I_y = \frac{\rho}{3} \oint_C x^3 dy$$

- 26. Use Exercise 25 to find the moment of inertia of a circular disk of radius *a* with constant density *ρ* about a diameter. (Compare with Example 4 in Section 15.5.)
- **27.** Use the method of Example 5 to calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where

$$\mathbf{F}(x, y) = \frac{2xy\,\mathbf{i} + (y^2 - x^2)\,\mathbf{j}}{(x^2 + y^2)^2}$$

and C is any positively oriented simple closed curve that encloses the origin.

- **28.** Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle x^2 + y, 3x y^2 \rangle$ and *C* is the positively oriented boundary curve of a region *D* that has area 6.
- **29.** If **F** is the vector field of Example 5, show that $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every simple closed path that does not pass through or enclose the origin.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SECTION 16.7 SURFACE INTEGRALS 1121

- **6.** $\iint_{S} xyz \, dS,$ S is the cone with parametric equations $x = u \cos v$, $y = u \sin v$, z = u, $0 \le u \le 1$, $0 \le v \le \pi/2$
- 7. $\iint_{S} y \, dS$, *S* is the helicoid with vector equation $\mathbf{r}(u, v) = \langle u \cos v, u \sin v, v \rangle, \ 0 \le u \le 1, \ 0 \le v \le \pi$
- 8. $\iint_{S} (x^{2} + y^{2}) dS,$ *S* is the surface with vector equation $\mathbf{r}(u, v) = \langle 2uv, u^{2} - v^{2}, u^{2} + v^{2} \rangle, u^{2} + v^{2} \leq 1$
- 9. $\iint_{S} x^{2}yz \, dS,$ S is the part of the plane z = 1 + 2x + 3y that lies above the rectangle $[0, 3] \times [0, 2]$
- **10.** $\iint_{S} xz \, dS,$ S is the part of the plane 2x + 2y + z = 4 that lies in the first octant
- **11.** $\iint_S x \, dS$,

S is the triangular region with vertices (1, 0, 0), (0, -2, 0), and (0, 0, 4)

12. $\iint_S y \, dS$,

S is the surface $z = \frac{2}{3}(x^{3/2} + y^{3/2}), 0 \le x \le 1, 0 \le y \le 1$

13. $\iint_{S} x^{2}z^{2} dS,$ S is the part of the cone $z^{2} = x^{2} + y^{2}$ that lies between the planes z = 1 and z = 3

 $14. \quad \iint_S z \ dS,$

S is the surface $x = y + 2z^2$, $0 \le y \le 1$, $0 \le z \le 1$

- 15. ∬_S y dS,
 S is the part of the paraboloid y = x² + z² that lies inside the cylinder x² + z² = 4
- 16. ∬_S y² dS,
 S is the part of the sphere x² + y² + z² = 4 that lies inside the cylinder x² + y² = 1 and above the xy-plane
- 17. $\iint_{S} (x^{2}z + y^{2}z) dS,$ S is the hemisphere $x^{2} + y^{2} + z^{2} = 4, z \ge 0$
- **18.** $\iint_S xz \, dS$,

S is the boundary of the region enclosed by the cylinder $y^2 + z^2 = 9$ and the planes x = 0 and x + y = 5

- **19.** $\iint_{S} (z + x^{2}y) dS$, S is the part of the cylinder $y^{2} + z^{2} = 1$ that lies between the planes x = 0 and x = 3 in the first octant
- 20. ∫∫_S (x² + y² + z²) dS,
 S is the part of the cylinder x² + y² = 9 between the planes z = 0 and z = 2, together with its top and bottom disks

21–32 Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$ for the given vector field \mathbf{F} and the oriented surface *S*. In other words, find the flux of \mathbf{F} across *S*. For closed surfaces, use the positive (outward) orientation.

21. $\mathbf{F}(x, y, z) = ze^{xy} \mathbf{i} - 3ze^{xy} \mathbf{j} + xy \mathbf{k}$,

S is the parallelogram of Exercise 5 with upward orientation

- **22.** $\mathbf{F}(x, y, z) = z \mathbf{i} + y \mathbf{j} + x \mathbf{k}$, *S* is the helicoid of Exercise 7 with upward orientation
- **23.** $\mathbf{F}(x, y, z) = xy \mathbf{i} + yz \mathbf{j} + zx \mathbf{k}$, *S* is the part of the paraboloid $z = 4 x^2 y^2$ that lies above the square $0 \le x \le 1, 0 \le y \le 1$, and has upward orientation
- **24.** $\mathbf{F}(x, y, z) = -x \mathbf{i} y \mathbf{j} + z^3 \mathbf{k}$, S is the part of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 3 with downward orientation
- **25.** $\mathbf{F}(x, y, z) = x \mathbf{i} z \mathbf{j} + y \mathbf{k}$, S is the part of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant, with orientation toward the origin
- 26. F(x, y, z) = xz i + x j + y k,
 S is the hemisphere x² + y² + z² = 25, y ≥ 0, oriented in the direction of the positive y-axis
- 27. $\mathbf{F}(x, y, z) = y \mathbf{j} z \mathbf{k}$, *S* consists of the paraboloid $y = x^2 + z^2$, $0 \le y \le 1$, and the disk $x^2 + z^2 \le 1$, y = 1
- **28.** $\mathbf{F}(x, y, z) = xy \mathbf{i} + 4x^2 \mathbf{j} + yz \mathbf{k}$, *S* is the surface $z = xe^y$, $0 \le x \le 1, 0 \le y \le 1$, with upward orientation
- **29.** F(x, y, z) = x i + 2y j + 3z k, *S* is the cube with vertices $(\pm 1, \pm 1, \pm 1)$
- **30.** $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + 5 \mathbf{k}$, *S* is the boundary of the region enclosed by the cylinder $x^2 + z^2 = 1$ and the planes y = 0 and x + y = 2
- **31.** $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$, *S* is the boundary of the solid half-cylinder $0 \le z \le \sqrt{1 y^2}$, $0 \le x \le 2$
- 32. F(x, y, z) = y i + (z y) j + x k,
 S is the surface of the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1)
- **CAS** 33. Evaluate $\iint_{S} (x^2 + y^2 + z^2) dS$ correct to four decimal places, where S is the surface $z = xe^y$, $0 \le x \le 1$, $0 \le y \le 1$.
- **CAS** 34. Find the exact value of $\iint_S x^2 yz \, dS$, where S is the surface $z = xy, 0 \le x \le 1, 0 \le y \le 1$.
- **CAS** 35. Find the value of $\iint_S x^2 y^2 z^2 dS$ correct to four decimal places, where S is the part of the paraboloid $z = 3 2x^2 y^2$ that lies above the xy-plane.
- CAS **36.** Find the flux of

$$\mathbf{F}(x, y, z) = \sin(xyz)\,\mathbf{i} + x^2y\,\mathbf{j} + z^2e^{x/5}\,\mathbf{k}$$

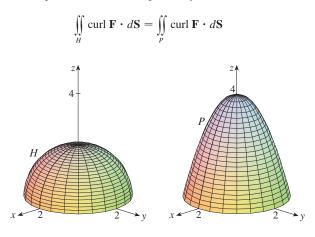
across the part of the cylinder $4y^2 + z^2 = 4$ that lies above the *xy*-plane and between the planes x = -2 and x = 2 with upward orientation. Illustrate by using a computer algebra system to draw the cylinder and the vector field on the same screen.

37. Find a formula for $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$ similar to Formula 10 for the case where *S* is given by y = h(x, z) and **n** is the unit normal that points toward the left.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16.8 Exercises

 A hemisphere H and a portion P of a paraboloid are shown. Suppose F is a vector field on R³ whose components have continuous partial derivatives. Explain why



- **2–6** Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$.
- **2.** $\mathbf{F}(x, y, z) = 2y \cos z \, \mathbf{i} + e^x \sin z \, \mathbf{j} + xe^y \, \mathbf{k}$, *S* is the hemisphere $x^2 + y^2 + z^2 = 9$, $z \ge 0$, oriented upward
- F(x, y, z) = x²z² i + y²z² j + xyz k,
 S is the part of the paraboloid z = x² + y² that lies inside the cylinder x² + y² = 4, oriented upward
- **4.** $\mathbf{F}(x, y, z) = \tan^{-1}(x^2yz^2)\mathbf{i} + x^2y\mathbf{j} + x^2z^2\mathbf{k}$, *S* is the cone $x = \sqrt{y^2 + z^2}$, $0 \le x \le 2$, oriented in the direction of the positive *x*-axis
- 5. $\mathbf{F}(x, y, z) = xyz \mathbf{i} + xy \mathbf{j} + x^2yz \mathbf{k}$, *S* consists of the top and the four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outward
- **6.** $\mathbf{F}(x, y, z) = e^{xy} \mathbf{i} + e^{xz} \mathbf{j} + x^2 z \mathbf{k}$, *S* is the half of the ellipsoid $4x^2 + y^2 + 4z^2 = 4$ that lies to the right of the *xz*-plane, oriented in the direction of the positive *y*-axis

7–10 Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$. In each case *C* is oriented counterclockwise as viewed from above.

- 7. $\mathbf{F}(x, y, z) = (x + y^2)\mathbf{i} + (y + z^2)\mathbf{j} + (z + x^2)\mathbf{k}$, *C* is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)
- 8. $\mathbf{F}(x, y, z) = \mathbf{i} + (x + yz)\mathbf{j} + (xy \sqrt{z})\mathbf{k}$, *C* is the boundary of the part of the plane 3x + 2y + z = 1in the first octant
- **9.** $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + 2xz \, \mathbf{j} + e^{xy} \, \mathbf{k},$ *C* is the circle $x^2 + y^2 = 16, z = 5$

Graphing calculator or computer required

1. Homework Hints available at stewartcalculus.com

- **10.** $\mathbf{F}(x, y, z) = xy \mathbf{i} + 2z \mathbf{j} + 3y \mathbf{k}$, *C* is the curve of intersection of the plane x + z = 5 and the cylinder $x^2 + y^2 = 9$
- **11.** (a) Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where

$$\mathbf{F}(x, y, z) = x^2 z \,\mathbf{i} + x y^2 \,\mathbf{j} + z^2 \,\mathbf{k}$$

and *C* is the curve of intersection of the plane x + y + z = 1 and the cylinder $x^2 + y^2 = 9$ oriented counterclockwise as viewed from above.

- (b) Graph both the plane and the cylinder with domains chosen so that you can see the curve *C* and the surface that you used in part (a).
- (c) Find parametric equations for C and use them to graph C.
 - 12. (a) Use Stokes' Theorem to evaluate ∫_C F dr, where F(x, y, z) = x²y i + ¹/₃x³ j + xy k and C is the curve of intersection of the hyperbolic paraboloid z = y² x² and the cylinder x² + y² = 1 oriented counterclockwise as viewed from above.
- (b) Graph both the hyperbolic paraboloid and the cylinder with domains chosen so that you can see the curve *C* and the surface that you used in part (a).
- (c) Find parametric equations for C and use them to graph C.

13–15 Verify that Stokes' Theorem is true for the given vector field **F** and surface *S*.

- **13.** $\mathbf{F}(x, y, z) = -y \mathbf{i} + x \mathbf{j} 2 \mathbf{k}$, S is the cone $z^2 = x^2 + y^2$, $0 \le z \le 4$, oriented downward
- **14.** $\mathbf{F}(x, y, z) = -2yz \mathbf{i} + y \mathbf{j} + 3x \mathbf{k}$, *S* is the part of the paraboloid $z = 5 - x^2 - y^2$ that lies above the plane z = 1, oriented upward
- 15. F(x, y, z) = y i + z j + x k,
 S is the hemisphere x² + y² + z² = 1, y ≥ 0, oriented in the direction of the positive y-axis
- **16.** Let *C* be a simple closed smooth curve that lies in the plane x + y + z = 1. Show that the line integral

$$\int_C z \, dx - 2x \, dy + 3y \, dz$$

depends only on the area of the region enclosed by C and not on the shape of C or its location in the plane.

17. A particle moves along line segments from the origin to the points (1, 0, 0), (1, 2, 1), (0, 2, 1), and back to the origin under the influence of the force field

$$\mathbf{F}(x, y, z) = z^2 \mathbf{i} + 2xy \mathbf{j} + 4y^2 \mathbf{k}$$

Find the work done.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. Another application of the Divergence Theorem occurs in fluid flow. Let $\mathbf{v}(x, y, z)$ be the velocity field of a fluid with constant density ρ . Then $\mathbf{F} = \rho \mathbf{v}$ is the rate of flow per unit area. If $P_0(x_0, y_0, z_0)$ is a point in the fluid and B_a is a ball with center P_0 and very small radius a, then div $\mathbf{F}(P) \approx \text{div } \mathbf{F}(P_0)$ for all points in B_a since div \mathbf{F} is continuous. We approximate the flux over the boundary sphere S_a as follows:

$$\iint_{S_a} \mathbf{F} \cdot d\mathbf{S} = \iiint_{B_a} \operatorname{div} \mathbf{F} dV \approx \iiint_{B_a} \operatorname{div} \mathbf{F}(P_0) dV = \operatorname{div} \mathbf{F}(P_0) V(B_a)$$

This approximation becomes better as $a \rightarrow 0$ and suggests that

8 div
$$\mathbf{F}(P_0) = \lim_{a \to 0} \frac{1}{V(B_a)} \iint_{S_a} \mathbf{F} \cdot d\mathbf{S}$$

Equation 8 says that div $\mathbf{F}(P_0)$ is the net rate of outward flux per unit volume at P_0 . (This is the reason for the name *divergence*.) If div $\mathbf{F}(P) > 0$, the net flow is outward near P and P is called a **source**. If div $\mathbf{F}(P) < 0$, the net flow is inward near P and P is called a **sink**.

For the vector field in Figure 4, it appears that the vectors that end near P_1 are shorter than the vectors that start near P_1 . Thus the net flow is outward near P_1 , so div $\mathbf{F}(P_1) > 0$ and P_1 is a source. Near P_2 , on the other hand, the incoming arrows are longer than the outgoing arrows. Here the net flow is inward, so div $\mathbf{F}(P_2) < 0$ and P_2 is a sink. We can use the formula for \mathbf{F} to confirm this impression. Since $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j}$, we have div $\mathbf{F} = 2x + 2y$, which is positive when y > -x. So the points above the line y = -xare sources and those below are sinks.

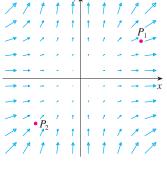


FIGURE 4

The vector field $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j}$

16.9 Exercises

1–4 Verify that the Divergence Theorem is true for the vector field **F** on the region *E*.

- F(x, y, z) = 3x i + xy j + 2xz k,
 E is the cube bounded by the planes x = 0, x = 1, y = 0,
 y = 1, z = 0, and z = 1
- **2.** $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + xy \mathbf{j} + z \mathbf{k}$, *E* is the solid bounded by the paraboloid $z = 4 - x^2 - y^2$ and the *xy*-plane
- **3.** $\mathbf{F}(x, y, z) = \langle z, y, x \rangle$, *E* is the solid ball $x^2 + y^2 + z^2 \le 16$
- 4. $\mathbf{F}(x, y, z) = \langle x^2, -y, z \rangle$, *E* is the solid cylinder $y^2 + z^2 \le 9, 0 \le x \le 2$

5–15 Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$; that is, calculate the flux of **F** across *S*.

- **5.** $\mathbf{F}(x, y, z) = xye^{z}\mathbf{i} + xy^{2}z^{3}\mathbf{j} ye^{z}\mathbf{k}$, *S* is the surface of the box bounded by the coordinate planes and the planes x = 3, y = 2, and z = 1
- **6.** $\mathbf{F}(x, y, z) = x^2yz \,\mathbf{i} + xy^2z \,\mathbf{j} + xyz^2 \,\mathbf{k}$, *S* is the surface of the box enclosed by the planes x = 0, x = a, y = 0, y = b, z = 0, and z = c, where *a*, *b*, and *c* are positive numbers
- CAS Computer algebra system required

- 7. $\mathbf{F}(x, y, z) = 3xy^2 \mathbf{i} + xe^z \mathbf{j} + z^3 \mathbf{k}$, *S* is the surface of the solid bounded by the cylinder $y^2 + z^2 = 1$ and the planes x = -1 and x = 2
- 8. $\mathbf{F}(x, y, z) = (x^3 + y^3)\mathbf{i} + (y^3 + z^3)\mathbf{j} + (z^3 + x^3)\mathbf{k}$, S is the sphere with center the origin and radius 2
- **9.** $\mathbf{F}(x, y, z) = x^2 \sin y \, \mathbf{i} + x \cos y \, \mathbf{j} xz \sin y \, \mathbf{k}$, *S* is the "fat sphere" $x^8 + y^8 + z^8 = 8$
- F(x, y, z) = z i + y j + zx k,
 S is the surface of the tetrahedron enclosed by the coordinate planes and the plane

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

where a, b, and c are positive numbers

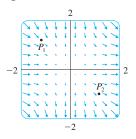
- **11.** $\mathbf{F}(x, y, z) = (\cos z + xy^2)\mathbf{i} + xe^{-z}\mathbf{j} + (\sin y + x^2z)\mathbf{k}$, *S* is the surface of the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4
- **12.** $\mathbf{F}(x, y, z) = x^4 \mathbf{i} x^3 z^2 \mathbf{j} + 4xy^2 z \mathbf{k}$, *S* is the surface of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = x + 2 and z = 0
- **13.** $\mathbf{F} = |\mathbf{r}| \mathbf{r}$, where $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$, S consists of the hemisphere $z = \sqrt{1 - x^2 - y^2}$ and the disk $x^2 + y^2 \le 1$ in the *xy*-plane

Homework Hints available at stewartcalculus.com

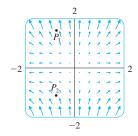
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1134 CHAPTER 16 VECTOR CALCULUS

- 14. $F = |r|^2 r$, where r = x i + y j + z k, S is the sphere with radius R and center the origin
- CAS 15. $F(x, y, z) = e^{y} \tan z i + y\sqrt{3 x^2} j + x \sin y k$, S is the surface of the solid that lies above the xy-plane and below the surface $z = 2 - x^4 - y^4$, $-1 \le x \le 1$, $-1 \le y \le 1$
- CAS 16. Use a computer algebra system to plot the vector field $F(x, y, z) = \sin x \cos^2 y i + \sin^3 y \cos^4 z j + \sin^5 z \cos^6 x k$ in the cube cut from the first octant by the planes $x = \pi/2$, $y = \pi/2$, and $z = \pi/2$. Then compute the flux across the surface of the cube.
 - 17. Use the Divergence Theorem to evaluate $\iint_S F \cdot dS$, where $F(x, y, z) = z^2 x i + \left(\frac{1}{3}y^3 + \tan z\right) j + (x^2 z + y^2) k$ and S is the top half of the sphere $x^2 + y^2 + z^2 = 1$. [Hint: Note that S is not a closed surface. First compute integrals over S₁ and S₂, where S₁ is the disk $x^2 + y^2 \leq 1$, oriented downward, and S₂ = S \cup S₁.]
 - **18.** Let $F(x, y, z) = z \tan^{-1}(y^2)i + z^3 \ln(x^2 + 1)j + zk$. Find the flux of F across the part of the paraboloid $x^2 + y^2 + z = 2$ that lies above the plane z = 1 and is oriented upward.
 - **19.** A vector field F is shown. Use the interpretation of divergence derived in this section to determine whether div F is positive or negative at P_1 and at P_2 .



- 20. (a) Are the points P₁ and P₂ sources or sinks for the vector field F shown in the figure? Give an explanation based solely on the picture.
 - (b) Given that F(x, y) = (x, y²), use the definition of divergence to verify your answer to part (a).



CAS 21–22 Plot the vector field and guess where div F > 0 and where div F < 0. Then calculate div F to check your guess.

21.
$$F(x, y) = \langle xy, x + y^2 \rangle$$
 22. $F(x, y) = \langle x^2, y^2 \rangle$

- 23. Verify that div E=0 for the electric field $E(x)=\frac{\epsilon Q}{\mid x\mid^3}\,x.$
- 24. Use the Divergence Theorem to evaluate

$$\iint\limits_{\mathbf{S}} (\mathbf{2x} + \mathbf{2y} + z^2) \, \mathrm{d}\mathbf{x}$$

where S is the sphere $x^2 + y^2 + z^2 = 1$.

25–30 Prove each identity, assuming that S and E satisfy the conditions of the Divergence Theorem and the scalar functions and components of the vector fields have continuous second-order partial derivatives.

25.
$$\iint_{S} \mathbf{a} \cdot \mathbf{n} \, d\mathbf{S} = \mathbf{0}, \text{ where } \mathbf{a} \text{ is a constant vector}$$

26.
$$V(\mathbf{E}) = \frac{1}{3} \iint_{S} \mathbf{F} \cdot d\mathbf{S}, \text{ where } \mathbf{F}(\mathbf{x}, \mathbf{y}, z) = \mathbf{x} \mathbf{i} + \mathbf{y} \mathbf{j} + z \mathbf{k}$$

27.
$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \mathbf{0}$$

28.
$$\iint_{S} \mathbf{D}_{n} \mathbf{f} \, d\mathbf{S} = \iiint_{E} \nabla^{2} \mathbf{f} \, d\mathbf{V}$$

29.
$$\iint_{S} (\mathbf{f} \nabla g) \cdot \mathbf{n} \, d\mathbf{S} = \iiint_{E} (\mathbf{f} \nabla^{2} g + \nabla \mathbf{f} \cdot \nabla g) \, d\mathbf{V}$$

30.
$$\iint_{S} (\mathbf{f} \nabla g - g \nabla \mathbf{f}) \cdot \mathbf{n} \, d\mathbf{S} = \iiint_{E} (\mathbf{f} \nabla^{2} g - g \nabla^{2} \mathbf{f}) \, d\mathbf{V}$$

31. Suppose S and E satisfy the conditions of the Divergence Theorem and f is a scalar function with continuous partial derivatives. Prove that

$$\iint_{S} fn \, dS = \iiint_{E} \nabla f \, dV$$

These surface and triple integrals of vector functions are vectors defined by integrating each component function. [Hint: Start by applying the Divergence Theorem to F = fc, where c is an arbitrary constant vector.]

32. A solid occupies a region E with surface S and is immersed in a liquid with constant density ρ . We set up a coordinate system so that the xy-plane coincides with the surface of the liquid, and positive values of *z* are measured downward into the liquid. Then the pressure at depth *z* is $\mathbf{p} = \rho g z$, where *g* is the acceleration due to gravity (see Section 8.3). The total buoyant force on the solid due to the pressure distribution is given by the surface integral

$$\mathbf{F} = -\iint_{\mathbf{S}} \mathbf{pn} \, \mathbf{dS}$$

where n is the outer unit normal. Use the result of Exercise 31 to show that F = -Wk, where W is the weight of the liquid displaced by the solid. (Note that F is directed upward because *z* is directed downward.) The result is Archimedes' Principle: The buoyant force on an object equals the weight of the displaced liquid.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.