8. Determine the solution of each of the following problems:

(a) $\nabla^2 u = 0$,	1 < r < 2,	$0<\theta<\pi,$
$u\left(1,\theta\right) = \sin\theta,$	$u\left(2,\theta\right)=0,$	$0 \le \theta \le \pi,$
$u\left(r,0\right) =0,$	$u\left(r,\pi\right) =0,$	$1 \le r \le 2.$
(b) $\nabla^2 u = 0$,	1 < r < 2,	$0<\theta<\pi,$
$u\left(1,\theta\right) =0,$	$u(2,\theta) = \theta(\theta - \pi),$	$0 \le \theta \le \pi,$
$u\left(r,0\right) =0,$	$u\left(r,\pi\right) =0,$	$1 \le r \le 2.$
(c) $\nabla^2 u = 0$,	1 < r < 3,	$0 < \theta < \pi/2,$
$u\left(1,\theta\right) =0,$	$u\left(3,\theta\right) =0,$	$0 \le \theta \le \pi/2,$
u(r,0) = (r-1)(r-3),	$u\left(r,\frac{\pi}{2}\right) = 0,$	$1 \le r \le 3.$
(d) $\nabla^2 u = 0$,	1 < r < 3,	$0 < \theta < \pi/2,$
$u\left(1,\theta\right) =0,$	$u\left(3,\theta\right) =0,$	$0 \le \theta \le \pi,$
$u\left(r,0\right) =0,$	$u\left(r,\frac{\pi}{2}\right) = f\left(r\right),$	$1 \le r \le 3.$

9. Solve the boundary-value problem

 $\nabla^2 u = 0, \qquad a < r < b, \qquad 0 < \theta < \alpha,$ $u(a, \theta) = f(\theta), \quad u(b, \theta) = 0, \qquad 0 \le \theta \le \alpha,$ $u(r, \alpha) = 0, \qquad u(r, 0) = f(r), \quad a \le r \le b.$

- 10. Verify directly that the Poisson integral is a solution of the Laplace equation.
- 11. Solve

```
\nabla^2 u = 0, \qquad 0 < r < a, \qquad 0 < \theta < \pi,u(r,0) = 0, \qquad u(r,\pi) = 0,u(a,\theta) = \theta(\pi - \theta), \quad 0 \le \theta \le \pi,u(0,\theta) \text{ is bounded.}
```