Question one: Choose the correct answer and fill it in the following table (2 points each)

1	2	3	4	5	6
a	a	a	a	a	a
b	b	b	b	b	b
c	с	с	с	с	с
d	d	d	d	d	d

1. The largest interval on which the following initial value problem has a unique solution is

$$(x-1)\frac{dy}{dx} + \frac{1}{x-2}y = \frac{1}{x-3}, \qquad y(4) = 1.5$$
a. (1,2)
b. (3, ∞)
c. (2,3)
d. (- ∞ ,1)

2. The general solution to $[\sin(x) + \sec^2(x+y)]dx + [\sin(y) + \sec^2(x+y)]dy = 0$ is a. $-\cos(x) - \cos(y) + \tan(x+y) = c$ b. $\cos(x) - \cos(y) + \tan(x+y) = c$ c. $-\cos(x) + \cos(y) + \tan(x+y) = c$ d. $\cos(x) + \cos(y) - \tan(x+y) = c$

3. The general solution to $\frac{dy}{dx} = \frac{1}{\sinh(2x+y)} - 2$ is

- a. $\sinh(2x+y) x = c$ b. $\cosh(2x+y) - x = c$ c. $\sinh(2x+y) + x = c$ d. $\cosh(2x+y) + x = c$
- 4. The following equation can be converted to a homogenous by

$$[x + 2y + 4]dx + [2x + 3y + 7]dy = 0$$

a. $x = u + 1, y = v - 2$
b. $x = u - 1, y = v + 2$
c. $x = u - 2, y = v - 1$
d. $x = u + 2, y = v + 1$

5. The most general function N(x, y) that makes the following equation exact is given by

$$[2y\cos^{2}(x) + e^{x}]dy + N(x,y)dx = 0$$

a. $2y\cos^{2}(x) + e^{x} + h(x)$
b. $-y\sin(2x) + e^{x}y + h(x)$
c. $-2y\sin(2x) + e^{x}y + h(x)$
d. $-y^{2}\sin(2x) + e^{x}y + h(x)$

6. The integrating factor of $(y^2 + 2xy)dx - x^2dy = 0$ is

a.
$$\mu(x) = x^2$$
 b. $\mu(x) = x^{-2}$ c. $\mu(y) = y^2$ d. $\mu(y) = y^{-2}$

Question two : Find the solution to the following equations (2 points each)

b) <i>y</i> '	y'' + 10y' + 21y = 0
(c) $\overline{y'}$	'' + 10y' + 25y = 0
d) y'	$y'' + \omega^2 y = 0$ (where ω is a positive constant)

$$3\frac{dy}{dt} + 2y = e^{3t}y^{-2}$$

Page 2