The Hashemite University	Department of Mathematics	April 25, 2012			
Ordinary Differential Equations (1	.) Seconed Exam	Time: 60 Minutes			
Name (in Arabic):	Stu	Student Number:			
Section number or lecture time: $_$	Ins	structor name:			

Question one: Choose the correct answer and fill it in the following table (2 points each)

1	2	3	4	5	6
a	a	a	a	a	a
b	b	b	b	b	b
с	с	с	с	с	с
d	d	d	d	d	d

1. Given that $y_1(x) = x$ is a solution to the differential equation xy'' + y' + q(x)y = 0, x > 0. If the reduction of order method is used to obtain a second linearly independent solution (y_2) , then

- a. $y_2(x) = \ln(x)$ b. $y_2(x) = x \ln(x)$ c. $y_2(x) = \frac{1}{x^2}$ d. $y_2(x) = \frac{1}{x}$
- 2. The Wronskian of three solutions for the differential equation $x^4 y'' x^3 y'' + y = 0$, x > 0 is a. Cx b. $\frac{C}{x}$ c. $Ce^{\frac{-x^4}{4}}$ d. $Ce^{\frac{x^4}{4}}$

3. One of the following sets can be fundamental solution set for third order linear deferential equation

a. $\{e^x, e^{-x}, \cosh(x)\}$ b. $\{-3, 5\cos^2(x), \sin^2(x)\}$ c. $\{\cos(2x), 1, \cos^2(x)\}$ d. $\{1, x, x^2\}$

4. Given that y_1 is a solution to L[y](x) = 3g(x) and y_2 is a solution to L[y](x) = g(x), $g(x) \neq 0$, then a solution of L[y](x) = 0 is

a.
$$2y_1 - y_2$$
 b. $y_1 - 3y_2$ c. $3y_1 - y_2$ d. $y_1 - 2y_2$

- 5. Suppose that $r^2(r-3)^2(r^2+9)^3 = 0$ is the auxiliary equation of some differential equation with constant coefficients. Then the order of this equation is
 - a. 8 b. 9 c. 10 d. 11

6. The general solution for $y^{(4)} - 8y'' - 9y = 0$ is given by

a. $c_1 \cos(3x) + c_2 \sin(3x) + c_3 e^x + c_4 x e^x$ b. $c_1 \cos(x) + c_2 \sin(x) + c_3 e^{3x} + c_4 e^{-3x}$ c. $c_1 \cos(x) + c_2 \sin(x) + c_3 e^{3x} + c_4 x e^{3x}$ d. $c_1 \cos(3x) + c_2 \sin(3x) + c_3 e^x + c_4 e^{-x}$

Question two: (3 points) Find the particular solution to

$$L[y](x) := y'' - y' - 6y = 7^x.$$

Question three : (3 points) Determine the **form** (Do not evaluate the constants) of a particular solution to

$$y'' + 2y' + 5y = e^{-x}(\cos 2x + x)$$

Question four : (2 points) Find a general solution to the linear homogeneous differential equation with constant coefficients whose auxiliary equation is given by

$$(r-1)^2(r+5)(r^2+4)^2 = 0$$

Question five : (5 points) Use variation of parameters method to find a general solution to the following equation

$$x^2y'' - 4xy' + 6y = x, \quad x > 0$$