CHAPTER 1

Introduction

I I BACKGROUND

In the sciences and engineering, mathematical models are developed to aid in the understanding
of physical phenomena. These models often vield an equation that contains some derivatives
of an unknown function. Such an equation is called a differential eguation. Two examples of
models developed in calculus are the free fall of a body and the decay of a radioactive substance.

In the case of free fall, an object is released from a certain height above the ground and
falls under the force of gravity." Newton's second law, which states that an object’s mass times
its acceleration equals the total force acting on it, can be applied to the falling object. This
leads to the equation (see Figure 1.1)

d*h
dr?
where mi is the mass of the object, i is the height above the ground, dg.f:frff: is its acceleration,

g is the (constant) gravitational acceleration, and —myg is the force due to gravity. This is a differ-
ential equation containing the second derivative of the unknown height /1 as a function of time.

m = —mg

Figure 1.1 Apple in free fall

"We are assuming here that gravity is the anly force acting on the ohject and that this force is constant, More general
madels would 1ake imo accoum other forces. such as air resistance.
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Fortunately, the above equation is easy to solve for . All we have to do is divide by m and
integrate twice with respect to 1. That is,

dibo

dr® %
50

iflh

I= —gt + ¢y
and

— gt
;i=h{f}=%+['[f+{'3.

We will see that the constants of integration, ¢ and >, are determined if we know the initial

height and the initial velocity of the object. We then have a formula for the height of the object

at ume L

In the case of radioactive decay (Figure 1.2), we begin from the premise that the rate of

decay is proportional to the amount of radioactive substance present. This leads to the equation
da _
dr

where A >() is the unknown amount of radioactive substance present at time f and & is the pro-

portionality constant. To solve this differential equation, we rewrite it in the form

I —
Edl"ll = —kdr

and integrate to obtain

L= | -4
JE:M—J kdr

nA+Cy=-kr+6C.
Solving for A yields

A=Alf) =t =e b=t

—kA k>0,

where € is the combination of integration constants ¢~ ', The value of €, as we will see

later, is determined if the indtial amount of radioactive substance is given. We then have a for-
mula for the amount of radioactive substance at any future time .

Figure 1.2 Radicactive decay
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Section 1.1 Background 3

Even though the above examples were easily solved by methods learned in calculus, they do
give us some insight into the study of differential equations in general. First, notice that the solu-
tion of a differential equation is a function, like k(f) or A(7), not merely a number. Second, inte-
gration is an important too] in solving differential equations (not surprisingly!). Third, we cannot
expect to gel a unigue solution to a differential equation, since there will be arbitrary “‘constants
of integration.” The second derivative d:hfdfz in the free-fall equation gave rise to two constants,
¢y and ¢», and the first derivative in the decay equation gave rise, ultimately, to one constant, C.

Whenever a mathematical model involves the rate of change of one variable with respect
to another, a differential equation is apt to appear. Unfortunately, in contrast to the examples
for free fall and radicactive decay, the differential equation may be very complicated and diffi-
cult to analyze.

Differential equations arise in a variety of subject areas, including not only the physical sci-
ences but also such diverse ficlds as economics, medicine, psychology, and operations research.
We now list a few specific examples.

1. A classic application of differential equations is found in the study of an electric cir-
cuit consisting of a resistor, an inductor, and a capacitor diven by an electromotive
torce (see Figure 1.3). Here an application of Kirchholt's laws' leads to the equation

d* ig 1
) L +R—+—g=E),
di* dt C
where L 1s the inductance, R is the resistance, C 1s the capacitance, E(1) is the electro-
motive force, ¢lr) is the charge on the capacitor, and r is the time,

i1
i
Lp]

emf

Figure 1.3 Schematc for a senes BELC circuit

ol

. In the study of the gravitational equilibrium of a star, an application of Newton's law of
gravity and of the Stefan—Boltzmann law for gases leads to the equilibrium equation

ld(rjg

oy = =4 -
@ rdr \p dr) xh

where P is the sum of the gas Kinetic pressure and the radiation pressure, r is the dis-

tance from the center of the star, p is the density of matter, and & is the gravitational
constant,

"We will discuss Kirchhofl™s laws in Section 3.5,
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3. In psychology, one model of the leaming of a task involves the equation

v/ dr 2p

_\':"'rz{l -y RV

Here the variable y represents the leamer’s skill level as a function of time r. The
constants p and # depend on the individual learner and the nature of the task.

4. In the study of vibrating strings and the propagation of waves, we find the partial
differential equation
i u i i
@ F-d=5==0,
i’ e’
where 7 represents time, x the location along the string, ¢ the wave speed, and u the
displacement of the string, which is a function of time and locartion.

To begin our study of differential equations, we need some common terminology. If an
equation invelves the derivative of one varnable with respect to another, then the former is
called a dependent variable and the latter an independent variable. Thus, in the equation
- d’x dx
(5) ——+a—+ k=10

d e
t is the independent variable and x 1s the dependent variable. We refer to a and & as coefficients
in eguation (5. In the equation

du _ du _

{6
' iy iy

x and v are independent variables and u is the dependent variable.

A differential equation involving only ordinary denivatives with respect to a single indepen-
dent vanable is called an ordinary differential equation. A differential equation involving partial
dervatives with respect 1o more than one independent variable is a partial differential equation.
Equation (5) is an ordinary differential equation, and equation (6) is a partial differential equation.

The order of a differential equation is the order of the highest-order derivatives present in
the equation. Equation (5) is a second-order equation because d”x/dr* is the highest-order
derivative present. Equation (6) is a first-order equation becauwse only first-order partial deriva-
tives occur.

It will be useful to classify ordinary differential equations as being either linear or nonlin-
ear. Remember that lines (in two dimensions) and planes (in three dimensions) are especially
easy to visualize, when compared to nonlinear objects such as cubic curves or quadric surfaces.
For example, all the points on a line can be found if we know just two of them. Correspond-
ingly, linear differential equations are more amenable 1o solution than nonlinear ones. Now the
equations for lines ax + by = ¢ and planes ax + by + ¢z = o have the feature that the vanables
appear in additive combinations of their first powers only. By analogy a linear differential

Historival Foomone: This partial differential equation was first discovered by Jean le Rond d° Alembert (1717=1783)
in 1747,
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equation is one in which the dependent variable v and its denivatives appear in additive combi-
nations of their first powers.
More precisely, a differential equation is linear if it has the format

] d"y d"ly \ dy -. £(2)
(7) fylx] + o, glx) == cai bply]l— + mixly = Flx) ,
e m=REs g1 Ve e ’

where a,(x), @, i(x), ..., aslx) and F(x) depend only on the independent variable x. The addi-
tive combinations are permitied to have multipliers (coefficients) that depend on x: no restric-
tions are made on the nature of this v-dependence. If an ordinary differential equation is not
linear, then we call it nonlinear. For example,

¢ M )
dr:
i5 a nonlinear second-order ordinary differential equation because of the _'r‘ term, whereas
i‘;:' +y=x
is linear (despite the ' term). The equation
dy iy
R _'.'E = Cos X

is nonlinear because of the v dy/dy term,

Although the majority of equations one is likely to encounter in practice fall into the nonlin-
ear category. knowing how to deal with the simpler lincar equations is an important first siep (just
as tangent lines help our understanding of complicated curves by providing local approximations).

EEEEE 1.1

In Problems 1-12, a differential equation is given along
with the field or problem area in which it arises. Classify
each as an ordinary differential equation (ODE) or a
partial differential equation (PDE), give the order, and
indicate the independent and dependent variables, If the
egueation s an ordinary differential equation, indicare
whether the equartion ix linear or nonlinear.

1. 5?+4£+9x=2cm.’5;
- &

{mechanical vibrations, electrical circuits, seismology)

E-’l'h‘ I-F'I-'
—% — = 4 2y =0
v® ilx :

(Hermite's equation, quanium-mechanical harmonic
oscillator)

dy _ »2—3x)

de a1 = 3y)

(competition between two species, ecology)

':}:i: =+ ﬂlr =

e dyT

{Laplace’s equation, potential theory, electncity, heat,
acrodynamics)
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dvi\?

5 \-II + (—'—)_] = [, where C is a constant
. dx

{brachistochrone problem, calculus of variations)

dx
dt

(chemical reaction rates)

= k{4 — x)(1 = x), where k is a constant

= kp(P — p), where & and P are constants

{Il.'lgi.‘-tif: +.unr-: epidemiology, economics)

v'm

(Kidder's equnltun. flow of gases through a porous
medium)

(aerodynamics, stress analysis)
d*y

L B—=zxll — x
dy? \ )

(deflection of beams)
o ”-'ﬁ:r AN + kN, where & is a constant
o are r dr

(nuclear fission)

12.

dh 0.1 } +'ElL 0
AT A — pF)= y =
di?

ivan der Pol’s equation, triode vacuum tube)

In Problems [13-16, weite a differential equation that fiis
the phivsical deseription.

I3I

14.

15.

16.

17.

The rate of change of the population p of bacteria at
time 1 is proportional to the population at time 1,

The velocity at time f of a particle moving along a
straight line is proportional to the fourth power of its
posiion X

The rate of change in the temperature T of coffee at
time ¢ is proportional to the difference between the
temperature M of the air at ume 1 and the tempera-
ture of the coffee at ime r.

The rate of change of the mass A of salt at time ! is
proportional to the square of the mass of salt present
at ime 1.

Drag Race. Two drivers, Alison and Kevin, are par-
ticipating in a drag race. Beginning from a standing
start, they each proceed with a constant acceleration.
Alison covers the last 1/4 of the distance in 3 sec-
onds, whereas Kevin covers the last 1/3 of the dis-
tance in 4 seconds. Who wins and by how much time?

| : SOLUTIONS AND INITIAL VALUE PROBLEMS

An nth-order ordinary differential equation is an equality relating the independent variable to
the nth denvative {and usually lower-order derivatives as well) of the dependent variable.

Examples are

d' ey
2 o i cae ¥ 'l."1
dx? dx

X

(second-order, x independent, v dependent)

(second-order, 1 independent, v dependent)

(fourth-order, 1 independent, x dependent).

"Misroricn! Foomore: In 1630 Galileo formulaied the brachisiochrone problem { Spe yioros = shoriest, yporos =
time j, that 15, o determine a path down which a particle will fall from one given point to another o the shortest time. 0
was reproposed by John Bemoull in 1696 and solved h!.' him the following year.



Example 1

Solution

Example 2

Solution

Section 1.2 Solutions and Initial Value Problems 7

Thus, a general form for an ath-order equation with x independent, v dependent. can be
expressed as

dy g
i) F(.t,}',a,,...,F)—ﬂ.

where F is a function that depends on x, v, and the derivatives of y up to order n: that is, on x.
¥y o« .o d"v/dx". We assume that the equation holds for all x in an open interval / (a < x < b,
where @ or b could be infinite). In many cases we can isolate the highest-order term oy /dy"
and write equation (1) as

d"y dr dYy
(2) =flay,—.. :

dx” de T e

which i1s often preferable to (1) for theoretical and computational purposes.

Explicit Solution

Definition 1. A function ¢{x) that when substituted for ¥ in equation (1) Jor (2)]
satisfies the equation for all x in the imerval J is called an explicit solution to the
equation on /.

Show that ¢(x) = x* — x ' is an explicit solution to the linear equation

2
dy 2

ILI.'E .-'-"1-

The functions ¢(x) = x* — x~ ! d'(x) = 2x + x7%, and ¢"(x) = 2 — 2x™* are defined for all
x # 0. Substitution of d{x) for v in equation (3) gives

i3]

@E=-2x% = f—E{xE —x N=02-x)-2-x)=0.

Since this is valid for any x # 0, the function $(x) = x> = x 7! is an explicit solution to (3) on

(—oo, 0) and also on (0, cc). @
Show that for any choice of the constants ¢; and ¢, the function

d(x) = cje™* + ce™
is an explicit solution to the linear equation
4 Y=y =-2y=0.
We compute &'(x) = —cje ™ + 2e:¢™ and ¢"(x) = cie ™" + deae™ ., Substitution of ¢, &',
and ¢" for v, v, and v in equation (4) yields

(cie™ + dewe™) = (=cre™ + 2c26™) = 2(c1e™ + ce™

= ey +¢; = 201)e™ + (dex — 203 — 23)e™ =0 .
7
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Since equality holds for all v in (-0, oo}, then d(x) = cje " + cae™ is an explicit solution to
(4) on the interval (—o0, oo) for any choice of the constants ¢; and ¢5. #

As we will see in Chapter 2, the methods for solving differential equations do not always
yield an explicit solution for the equation. We may have to settle for a solution that is defined
implicitly. Consider the following example.

Show that the relation

(5) V=-x'+8=0

implicitly defines a solution to the nonlinear equation

dy 2y

on the interval (2, oo).
When we solve (5) for ¥, we cbtain vy = = "'n.r'f.l"J' i 8. Let’s try b(x) = "'.r‘(.l.'j\—f R o see if itis an

explicit solution. Since ddb/dx = 3+*/(2Vx* — 8) , both ¢ and dé/dx are defined on (2, o0).
Substituting them into (6) yields

s e E
2V -8 2(Vii-8)

which is indeed valid for all x in (2, co). [ You can check that (x) = — V2! — 8 is also an
explicit solution to (6).] &

Implicit Solution

Definition 2. A relation Glx, ¥) = 0 is said to be an implicit solution to equation (1)
on the interval [ if it defines one or more explicit solutions on £

Show that
(7 x+yte¥=

is an implicit solution o the nonlinear equation
l:-h'
5 (1 + '“'“}I-w + 1+ ye" =0,

First, we observe that we are unable to solve (7) directly for v in terms of x alone. However, for
(7) to hold, we realize that any change in x requires a change in y. so we expect the relation (7)
io define implicitly at least one function v(x). This is difficult to show directly but can be rigor-
ously verified using the implicit function theorem’ of advanced calculus, which guarantees
that such a function .1.*{_1']' cxists that is also differentiable {see Problem 300,

'See Vector Calculns, Sth ed, by J. E. M.ﬂmjg: and A. J. Tromba (Freeman, San Francisco, 2004).
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Once we know that y is a differentiable function of x, we can use the technigue of implicit
differenuiation. Indeed, from (7) we obtain on differentiating with respect to x and applying the
product and chain rules,

d = xy ot tf'.; Y| ,t!"‘; ik
—[.l.'.-:-I-_m + ¢%) = | +d—r+r-(_'. +.:.d—_f) =)
or

dv
{1+ _l.'t'"]"'} +1+ye"=0,

d.
which is identical to the differential equation (8). Thus, relation (7) is an implicit solution on
some interval guaranteed by the implicit function theorem.

Venfy that for every constant C the relation 4t — _\': = € is an implicit solution to

%) —4x =1

Vv
Graph the solution curves for C = 0, =1, =4. (We call the collection of all such selutions a
ente-parameter family of solutions. )

When we implicitly differentiate the equation 40* — ;': = € with respect to x, we fhind

dy
8 — 2y o [+ £
which is equivalent to (9). In Figure 1.4 we have sketched the implicit solutions for C = (), £ 1.
=4. The curves are hyperbolas with common asymptotes ¥ = *2v. Notice that the implicit
solution curves (with C arbitrary) fill the entire plane and are nonintersecting for C # 0. For
C = (), the implicit solution gives rise to the two explicit solutions y = 2y and v = —2x, both of
which pass through the origin. #

C II—--".

i Tare

Fip,urtg.d Implicit solutions 4° = v* = €
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For brevity we hereafter use the term solution to mean either an explicit or an implicit
solution.

In the beginning of Section 1.1, we saw that the solution of the second-order free-fall
equation invoked two arbitrary constants of integration ¢, ¢3:

3
—gr
hit) = = +ep+or,

whereas the solution of the firsr-order radioactive decay equation contained a single constant C

Al) = ce™ .
It is clear that integration of the simple fourth-order equation
det

brings in four undetermined constants:
% i 2 ;
_‘I-'{.l.] STt ot oaxrto.

It will be shown later in the text that in general the methods for solving nth-order differential
equations evoke n arbitrary constanis. In most cases, we will be able to evaluate these constants
if we know n initial values v(xg), ¥'(xg). . . .. _'|.":"_ W ).

Initial Value Problem

Definition 3. By an initial value problem for an nth-order differential equation

)
'1'}'.:.-'_1.'*"".:!,:.'" h

we mean: Find a solution to the differential equation on an interval [ that satisfies at xg
the n initial conditions

¥(xo) = 3.

dv
Ef.-‘l'u} gk i

gt I_'i"

A1 (¥a) = ¥u-1 .

where xy € [ and vy, ¥, . . . . ¥, - | are given constants,

In the case of a first-order equation, the initial conditions reduce to the single requirement

ylxol =y,

10
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and in the case of a second-order equation, the initial conditions have the form

dy
yxg) = o . d_}{-‘tu] =¥ .
The terminology initial conditions comes from mechanics, where the independent variable
x represents time and is customarily symbolized as 1. Then if 1y is the starting time, v(ty) = vy
represents the initial location of an object and ¥' (1) gives its initial velocity,

Show that ¢(x) = sin x — cos x is a solution to the initial value problem

i

d-y dy
(1K) —= 4+ p=10; 0} = —1, =) =1
[ ol 10) r:f_l.'[J

Observe that ¢lx) = sin x — cos x, dbfdx = cos x + sin x, and u'zdrfdt: = —sinx + cos xare
all defined on (—oo, oc). Substituting into the differential equation gives

(—sinx + cosx) + (sinx — cosx) =0 ,

which holds for all x € (—oe, 0o). Hence, &(x) is a solution to the differential equation i (10)
on [ —oo, o¢). When we check the initial conditions, we find

$0) = sin0 —cos 0= —1 ,

dd

Itltl.'_!:l]\]=|:||:|!-:ﬂ+:uni.'i=l ;

which meets the requirements of (10). Therefore, ¢(x) is a solution to the given initial value
problem. #

As shown in Example 2, the function ¢(x) = ¢je ™" + cs¢™* is a solution to
dy  dy
_'..__'_2‘.'.=u

dvt

for any choice of the constants ¢ and ¢». Determine ¢; and ¢ so that the initial conditions

av
] L] : il % — ‘__3
y0)=2 and e (0)
are satisfied.
To determine the constants ¢; and ¢, we first compute déyfdx to get debfedx = —cje ™ + 2ese™.

Substituting in our initial conditions gives the following system of equations:

H0) ="+ =2, o+ =2,
d o
E‘?Lm = —c1e? + 206" = -3, —cy + 263 = =3,
Adding the last two equations yields 3c; = —1, 50 €2 = —1/3. Since ¢; + ¢ = 2, we find

¢y = 7/3. Hence, the solution to the initial value problem is é(x) = (7/3)e ™" — (1/3)e™. #

11
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We now state an existence and uniqueness theorem for first-order initial value problems.
We presume the differential equation has been cast into the format

as ")

Of course, the right-hand side, f{x, v). must be well defined at the starting value x;, for x and at
the stipulated initial value v, = v(xg) for y. The hypotheses of the theorem, moreover, require
continuity of both f and af/dy for x in some interval @ < x < b containing xg, and for v in some
interval ¢ < v <  containing yp. Notice that the set of points in the xy-plane that satisfy
a < x < band ¢ < y < d constitutes a rectangle. Figure 1.5 depicts this “rectangle of continu-
ity” with the initial point (xg. yo) in its interior and a sketch of a portion of the solution curve
contained therein.

Existence and Uniqueness of Solution
Theorem 1. Given the initial value problem

dy

g =Tey) . alxe) =y .

assume that f and f/dy are continuous functions in a rectangle
R={lxyhra<x<bhec<y<d

that contains the point (xg. ¥g). Then the initial value problem has a unique solution
é(x) in some interval x4 — 8 < x < x; + &, where & is a positive number.

Figure 1.5 Layout for the existence-uniquencss theorem

12
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The preceding theorem tells us two things. First, when an equation satisfies the hypotheses
of Theorem |, we are assured that a solution to the initial value problem exists. Naturally, it is
desirable to know whether the equation we are trying to solve actually has a solution before we
spend too much time trying to solve it. Second, when the hypotheses are satisfied, there is a
unigue solution to the initial value problem. This uniqueness tells us that if we can find a solu-
tion, then it is the enly solution for the initial value problem. Graphically, the theorem says that
there is only one solution curve that passes through the point (xg. ¥g). In other words, for this
first-order equation, two solutions cannot cross anywhere in the rectangle, Notice that the exis-
tence and uniqueness of the solution holds only in seme neighborhood (xg = 8, xy + 8).
Unfortunately, the theorem does not tell us the span (23) of this neighborhood (merely that it is
not zero). Problem 18 elaborates on this feature.

Problem 19 gives an example of an equation with no solution. Problem 29 displays an ini-
tial value problem for which the solution is not unique. Of course, the hypotheses of Theorem |
are not met for these cases.

When initial value problems are used to model physical phenomena, many practitioners
tacitly presume the conclusions of Theorem | to be valid. Indeed, for the initial value problem
to be a reasonable model, we certainly expect it to have a solution, since physically “something
does happen.” Moreover, the solution should be unigue in those cases when repetition of the
experiment under identical conditions yields the same results.'

The proof of Theorem | involves converting the initial value problem into an integral
equation and then using Picard’s method to generate a sequence of successive approximations
that converge to the solution. The conversion to an integral equation and Picard’s method are
discussed in Group Project B at the end of this chapter. A detailed discussion and proof of the
theorem are given in Chapter 13."

For the initial value problem

dy 2. .3 o
(1) == wtegy wW1)=6,

does Theorem 1 imply the existence of a umique solution?

Here f(x.¥) = x* — ' and affay = —3x°. Both of these functions are continuous in any
rectangle containing the point (1, 6), so the hypotheses of Theorem 1 are satisfied. It then
follows from Theorem 1 that the initial value problem (11) has a unique solution in an interval
about x = 1 of the form (1 — &, | + &), where § is some positive number.

For the initial value problem
d‘l j
) ==3¥, y2)=0,
(1) T i ¥2) =0

does Theorem 1 imply the existence of a unique solution?

"AL Deast this is the case when we ane considering a deterministic model, as opposed 1o a probabilisic model.

" ANl references (o Chapters | 1=13 refer to the expanded text Fundamentaly of Differential Equeations and Boundary
Vittue Prablems, Sthoed,

13
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Here f(x, v) = 3% and affay = 2y "5, Unfortunately #f/ay is not continuous or even defined

when v = (. Consequently, there is no rectangle containing (2. 0) in which both fand af/ay are
continuous. Because the hypotheses of Theorem 1 do not hold, we cannot use Theorem | 1o
determine whether the initial value problem does or does not have a unique solution. It ums out
that this initial value problem has more than one solution. We refer you to Problem 29 and
Group Project F of Chapter 2 for the details. #

In Example 9 suppose the initial condition is changed to y(2) = 1. Then, since f and af/ay
are continuous in any rectangle that contains the point (2, 1) but does not intersect the y-axis—
say, R={[x,y:0 <x < 10,0 <y < 5}—it follows from Theorem 1 that this new initial
value problem has a unigue solution in some interval about x = 2.

EIEEEE 1.2

1. (a) Show that $(x) = ¥isan explicit solution 1o
dy
oy
on the interval [—o0, 0o).
{b) Show that dlx) = &' = x is an explicit solution to
iy

.l 3 ¥
=+ y =T+ (1~ 2)e* 4 x° =1
Rt ( )

on the interval | = oo, oo).
(c) Show that d(x) = x* — ¥ is an explicit solu-
tion 1o .rzd:.m'fdtl = 2v on the interval (0, co).
2. (a) Show that y* + x = 3 = 0 is an implicit solution
o dyfdy = =1/(2y) on the interval (=00, 3).

{b) Show that .'I!:I."‘ - _t'.'!."i‘sin x =1 is an implicit solu-

2y

tion (o
dy (xcosx+sinx = 1)y
dx 3(x = xsinx)

on the interval (0, 7/2).

I Problems 3-8, determine whether the given funciion is
a solution to the given differentiol equation.

_ g d’y 5

3 v=sinx+x" , —t e et
dx”

d x=2cosi—=3Fsnt, " +ax=1

5, 0=2e" — g%, {ﬂjﬁﬁﬂr—ﬂ+3ﬂ=—293
e i

6 x=cos2r, 2x + x = sin2r
it

14

T N Fa Tk l'-;_.'._'l-' ﬂ Ipe =10
. Y= [ e i ¥
B y=3sin2v+e™", ¥y +dy =57

In Problems 9-13, determine whether the given relation
is an implicit solution te the given differential eguation.
Assume that the relationship does define v implicitly as a
function af x and use implicit differentiation,

3 5 h’_\' X
L g + = = " m——
A de .y
dv 2y
10, y=Iny=x"+1, == = :
0.y : dx  vy—=1
dy &=y
v - #
- L i - e B e
1. e \ ot de e+
dy

12, v* —sin(x + ¥) =1, =2cseclx +y) — 1

iy
13 siny +xy—x =2,

oyt o+ (y Psin y — 2(y' )

-y
14. Show that dlx) = ¢; sinx + €2 cos x is a solution 1o
d*v/dx* + v = 0 for any choice of the constants ¢,
and ¢z, Thus, ¢ sin x + ¢2 cos & is a two-parameter
family of solutions to the differential equation.
15. Verify that ¢b(x) = 2/(1 = ce*). where ¢ is an arbi-
trary constant, is a one-parameter family of solutions to
dv _yly—2)
dy 2 3




