When $\alpha = 1$, solution (12.17.87) becomes

$$\psi(x,t) = \int_{-\infty}^{\infty} G(x-\xi, t) \psi_0(\xi) d\xi, \qquad (12.17.89)$$

where the Green's function G(x,t) is given by

$$G(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} E_{1,1} \left(-ak^2t\right) dk$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(ikx - atk^2\right) dk$$
$$= \frac{1}{\sqrt{4\pi at}} \exp\left(-\frac{x^2}{4at}\right).$$
(12.17.90)

This solution (12.17.89) is in perfect agreement with the classical solution obtained by Debnath (1995).

12.18 Exercises

1. Find the Fourier transform of

(a)
$$f(x) = \exp(-ax^2)$$
, (b) $f(x) = \exp(-a|x|)$,

where a is a constant.

2. Find the Fourier transform of the gate function

$$f_a(x) = \begin{cases} 1, & |x| < a, & a \text{ is a positive constant.} \\ \\ 0, & |x| \ge a. \end{cases}$$

3. Find the Fourier transform of

(a)
$$f(x) = \frac{1}{|x|}$$
, (b) $f(x) = \chi_{[-a,a]}(x) = \begin{cases} 1, & -a < x < a \\ 0, & \text{otherwise,} \end{cases}$

(c)
$$f(x) = \begin{cases} 1 - \frac{|x|}{a}, & |x| \le a \\ 0, & |x| \ge a, \end{cases}$$
 (d) $f(x) = \frac{1}{(x^2 + a^2)}.$

- 4. Find the Fourier transform of
 - (a) $f(x) = \sin(x^2)$, (b) $f(x) = \cos(x^2)$.

522 12 Integral Transform Methods with Applications

5. Show that

$$I = \int_0^\infty e^{-a^2 x^2} dx = \sqrt{\pi}/2a, \qquad a > 0,$$

by noting that

$$I^{2} = \int_{0}^{\infty} \int_{0}^{\infty} e^{-a^{2} \left(x^{2} + y^{2}\right)} dx \, dy = \int_{0}^{\pi/2} \int_{0}^{\infty} e^{-a^{2} r^{2}} r \, dr \, d\theta.$$

6. Show that

$$\int_0^\infty e^{-a^2x^2} \cos bx \, dx = \left(\sqrt{\pi}/2a\right) e^{-b^2/4a^2}, \qquad a > 0.$$

7. Prove that

(a)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ikx} F(k) \, dk = \mathcal{F}^{-1} \{ F(k) \},$$

(b) $\mathcal{F} [f(ax - b)] = \frac{1}{|a|} e^{ikb/a} F(k/a).$

- 8. Prove the following properties of the Fourier convolution:
 - (a) f(x) * g(x) = g(x) * f(x), (b) f * (g * h) = (f * g) * h,
 - (c) f * (ag + bh) = a (f * g) + b (f * h), where a and b are constants,
 - (d) f * 0 = 0 * f = 0, (e) $f * 1 \neq f$,

(f)
$$f * \sqrt{2\pi} \,\delta = f = \sqrt{2\pi} \,\delta * f$$
,

(g)
$$\mathcal{F} \{ f(x) g(x) \} = (F * G)(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k - \xi) G(\xi) d\xi,$$

9. Prove the following properties of the Fourier convolution:

(a)
$$\frac{d}{dx} \{f(x) * g(x)\} = f'(x) * g(x) = f(x) * g'(x),$$

(b) $\frac{d^2}{dx^2} [(f * g)(x)] = (f' * g')(x) = (f'' * g)(x),$
(c) $(f * g)^{(m+n)}(x) = [f^{(m)} * g^{(n)}](x),$
(d) $\int_{-\infty}^{\infty} (f * g)(x) dx = \int_{-\infty}^{\infty} f(u) du \int_{-\infty}^{\infty} g(v) dv.$
(e) If $g(x) = \frac{1}{2a} H(a - x)$, then

(f * g)(x) is the average value of f(x) in [x - a, x + a].

(f) If
$$G_t(x) = \frac{1}{\sqrt{4\pi kt}} \exp\left(-\frac{x^2}{4\kappa t}\right)$$
, then $(G_t * G_s)(x) = G_{t+s}(x)$.

10. Prove the following results:

(a)
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-k^2 t - ikx} dk = \frac{1}{\sqrt{2t}} e^{-x^2/4t},$$

(b) $\int_{-\infty}^{\infty} F(k) g(k) e^{ikx} dk = \int_{-\infty}^{\infty} f(y) G(y - x) dy,$
(c) $\int_{-\infty}^{\infty} F(k) g(k) dk = \int_{-\infty}^{\infty} f(y) G(y) dy,$
(d) $\sin x * e^{-a|x|} = \sqrt{\frac{2}{\pi}} \frac{a \sin x}{(1 + a^2)},$ (e) $e^{ax} * \chi_{[0,\infty)}(x) = \frac{1}{a} \frac{e^{ax}}{\sqrt{2\pi}}, \quad a > 0,$
(f) $\frac{1}{\sqrt{2a}} \exp\left(-\frac{x^2}{4a}\right) * \frac{1}{\sqrt{2b}} \exp\left(-\frac{x^2}{4b}\right) = \frac{1}{\sqrt{2(a+b)}} \exp\left(-\frac{x^2}{4(a+b)}\right).$

11. Determine the solution of the initial-value problem

$$u_{tt} = c^2 u_{xx}, \quad -\infty < x < \infty, \quad t > 0, u(x,0) = f(x), \quad u_t(x,0) = g(x), \quad -\infty < x < \infty.$$

12. Solve

$$u_t = u_{xx}, \qquad x > 0, \qquad t > 0,$$

 $u(x,0) = f(x), \qquad u(0,t) = 0.$

13. Solve

$$u_{tt} = c^2 u_{xxxx} = 0, \qquad -\infty < x < \infty, \qquad t > 0, u(x,0) = f(x), \qquad u_t(x,0) = 0, \quad -\infty < x < \infty.$$

14. Solve

$$u_{tt} + c^2 u_{xxxx} = 0, \qquad x > 0, \qquad t > 0,$$

$$u(x, 0) = 0, \qquad u_t(x, 0) = 0, \qquad x > 0,$$

$$u(0, t) = g(t), \qquad u_{xx}(0, t) = 0, \qquad t > 0.$$

15. Solve

$$\phi_{xx} + \phi_{yy} = 0, \quad -a < x < a, \quad 0 < y < \infty,$$

$$\phi_y(x,0) = \begin{cases} \delta_0, & 0 < |x| < a, \\ 0, & |x| > a. \end{cases}$$

$$\phi(x,y) \to 0 \text{ uniformly in } x \text{ as } y \to \infty.$$

524 12 Integral Transform Methods with Applications

16. Solve

$$u_t = u_{xx} + t u, \quad -\infty < x < \infty, \qquad t > 0,$$

$$u(x,0) = f(x), \quad u(x,t) \text{ is bounded}, \quad -\infty < x < \infty.$$

17. Solve

$$u_t - u_{xx} + hu = \delta(x) \,\delta(t), \quad -\infty < x < \infty, \qquad t > 0,$$

$$u(x, 0) = 0, \qquad u(x, t) \to 0 \text{ uniformly in } t \text{ as } |x| \to \infty.$$

18. Solve

$$u_t - u_{xx} + h(t) u_x = \delta(x) \delta(t), \quad 0 < x < \infty, \qquad t > 0,$$
$$u(x, 0) = 0, \qquad u_x(0, t) = 0,$$
$$u(x, t) \to 0 \text{ uniformly in } t \text{ as } x \to \infty.$$

19. Solve

$$\begin{aligned} u_{xx} + u_{yy} &= 0, & 0 < x < \infty, & 0 < y < \infty, \\ u(x,0) &= f(x), & 0 \le x < \infty, \\ u_x(0,y) &= g(y), & 0 \le y < \infty, \\ u(x,y) \to 0 \text{ uniformly in } x \text{ as } x \to \infty \text{ and uniformly in } y \text{ as } x \to \infty. \end{aligned}$$

20. Solve

$$u_{xx} + u_{yy} = 0, \quad -\infty < x < \infty, \quad 0 < y < a,$$

$$u(x,0) = f(x), \quad u(x,a) = 0, \quad -\infty < x < \infty,$$

$$u(x,y) \to 0 \text{ uniformly in } y \text{ as } |x| \to \infty.$$

21. Solve

$$u_t = u_{xx}, \quad x > 0, \quad t > 0,$$

 $u(x,0) = 0, \quad x > 0, \quad u(0,t) = f(t), \quad t > 0,$
 $u(x,t)$ is bounded for all x and t.

22. Solve

$$u_{xx} + u_{yy} = 0, x > 0, 0 < y < 1, u(x, 0) = f(x), u(x, 1) = 0, x > 0, u(0, y) = 0, u(x, y) \to 0 \text{ uniformly in } y \text{ as } x \to \infty.$$

23. Find the Laplace transform of each of the following functions:

(a) t^n ,	(b) $\cos \omega t$,	(c) $\sinh kt$,
(d) $\cosh kt$,	(e) te^{at} ,	(f) $e^{at}\sin\omega t$,
(g) $e^{at} \cos \omega t$,	(h) $t \sinh kt$,	(i) $t \cosh kt$,
(j) $\sqrt{\frac{1}{t}}$,	(k) \sqrt{t} ,	(l) $\frac{\sin at}{t}$.

24. Find the inverse transform of each of the following functions:

(a)
$$\frac{s}{(s^2+a^2)(s^2+b^2)}$$
, (b) $\frac{1}{(s^2+a^2)(s^2+b^2)}$,
(c) $\frac{1}{(s-a)(s-b)}$, (d) $\frac{1}{s(s+a)^2}$,
(e) $\frac{1}{s(s+a)}$, (f) $\frac{s^2-a^2}{(s^2+a^2)^2}$.

25. The velocity potential $\phi(x, z, t)$ and the free-surface evaluation $\eta(x, t)$ for surface waves in water of infinite depth satisfy the Laplace equation

$$\phi_{xx} + \phi_{zz} = 0, \qquad -\infty < x < \infty, \qquad -\infty < z \le 0, \qquad t > 0,$$

with the free-surface, boundary, and initial conditions

$$\phi_{z} = \eta_{t} \quad \text{on} \quad z = 0, \qquad t > 0,$$

$$\phi_{t} + g\eta = 0 \quad \text{on} \quad z = 0, \qquad t > 0,$$

$$\phi_{z} \rightarrow 0 \quad \text{as} \quad z \rightarrow -\infty,$$

$$\phi(x, 0, 0) = 0 \quad \text{and} \quad \eta(x, 0) = f(x), \quad -\infty < x < \infty,$$

where g is the constant acceleration due to gravity. Show that

$$\phi(x,z,t) = -\frac{\sqrt{g}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} k^{-\frac{1}{2}} F(k) e^{|k|z - ikx} \sin\left(\sqrt{g|k|}t\right) dk,$$
$$\eta(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k) e^{-ikx} \cos\left(\sqrt{g|k|}t\right) dk,$$

where k represents the Fourier transform variable. Find the asymptotic solution for $\eta(x,t)$ as $t \to \infty$.

26. Use the Fourier transform method to show that the solution of the one-dimensional Schrödinger equation for a free particle of mass m,

$$i\hbar\psi_t = -\frac{\hbar^2}{2m}\psi_{xx}, \quad -\infty < x < \infty, \qquad t > 0,$$

$$\psi(x,0) = f(x), \quad -\infty < x < \infty,$$

526 12 Integral Transform Methods with Applications

where ψ and ψ_x tend to zero as $|x| \to \infty$, and $h = 2\pi\hbar$ is the Planck constant, is given by

$$\psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(\xi) G(x-\xi) d\xi,$$

where $G(x,t) = \frac{(1-i)}{2\sqrt{\gamma t}} \exp\left[-\frac{x^2}{4i\gamma t}\right]$ is the Green's function and $\gamma = \frac{\hbar}{2m}$.

27. Prove the following properties of the Laplace convolution:

- (a) f * g = g * f, (b) f * (g * h) = (f * g) * h,
- (c) $f * (\alpha g + \beta h) = \alpha (f * g) + \beta (f * h)$, α and β are constants,
- (d) f * 0 = 0 * f, (e) $\frac{d}{dt} [(f * g) (t)] = f'(t) * g(t) + f(0) g(t)$, (f) $\frac{d^2}{dt^2} [(f * g) (t)] = f''(t) * g(t) + f'(0) g(t) + f(0) g'(t)$, (g) $\frac{d^n}{dt^n} [(f * g) (t)] = f^{(n)}(t) * g(t) + \sum_{k=0}^{n-1} f^{(k)}(0) g^{(n-k-1)}(t)$.

28. Obtain the solution of the problem

$$u_{tt} = c^2 u_{xx}, \quad 0 < x < \infty, \qquad t > 0,$$

 $u(x,0) = f(x), \quad u_t(x,0) = 0,$
 $u(0,t) = 0, \qquad u(x,t) \to 0$ uniformly in t as $x \to \infty$.

29. Solve

$$u_{tt} = c^2 u_{xx}, \quad 0 < x < l, \quad t > 0,$$

$$u(x,0) = 0, \qquad u_t(x,0) = 0,$$

$$u(0,t) = f(t), \qquad u(l,t) = 0, \quad t \ge 0.$$

30. Solve

$$\begin{aligned} u_t &= \kappa u_{xx}, \quad 0 < x < \infty, \qquad t > 0, \\ u\left(x, 0\right) &= f_0, \qquad 0 < x < \infty, \\ u\left(0, t\right) &= f_1, \qquad u\left(x, t\right) \to f_0 \text{ uniformly in } t \text{ as } x \to \infty, \quad t > 0. \end{aligned}$$

31. Solve

$$u_t = \kappa u_{xx}, \quad 0 < x < \infty, \qquad t > 0,$$

$$u(x,0) = x, \qquad x > 0,$$

$$u(0,t) = 0, \qquad u(x,t) \to x \text{ uniformly in } t \text{ as } x \to \infty, \quad t > 0.$$

32. Solve

$$u_t = \kappa u_{xx}, \quad 0 < x < \infty, \qquad t > 0,$$

$$u(x,0) = 0, \qquad 0 < x < \infty,$$

$$u(0,t) = t^2, \qquad u(x,t) \to 0 \text{ uniformly in } t \text{ as } x \to \infty, \quad t \ge 0.$$

33. Solve

$$\begin{aligned} u_t &= \kappa u_{xx} - hu, \quad 0 < x < \infty, \quad t > 0, \quad h = \text{constant}, \\ u(x,0) &= f_0, \qquad x > 0, \\ u(0,t) &= 0, \qquad u_x(0,t) \to 0 \text{ uniformly in } t \text{ as } x \to \infty, \quad t > 0. \end{aligned}$$

34. Solve

$$\begin{aligned} u_t &= \kappa u_{xx}, \quad 0 < x < \infty, \quad t > 0, \\ u(x,0) &= 0, \qquad 0 < x < \infty, \\ u(0,t) &= f_0, \qquad u(x,t) \to 0 \text{ uniformly in } t \text{ as } x \to \infty, \quad t > 0. \end{aligned}$$

35. Solve

$$u_{tt} = c^2 u_{xx}, \quad 0 < x < \infty, \quad t > 0, u(x,0) = 0, \qquad u_t(x,0) = f_0, \quad 0 < x < \infty, u(0,t) = 0, \qquad u_x(x,t) \to 0 \text{ uniformly in } t \text{ as } x \to \infty, \quad t > 0.$$

36. Solve

$$u_{tt} = c^2 u_{xx}, \quad 0 < x < \infty, \quad t > 0, u(x,0) = f(x), \quad u_t(x,0) = 0, \quad 0 < x < \infty, u(0,t) = 0, \qquad u_x(x,t) \to 0 \text{ uniformly in } t \text{ as } x \to \infty, \quad t > 0.$$

- 37. A semi-infinite lossless transmission line has no initial current or potential. A time dependent EMF, $V_0(t) H(t)$ is applied at the end x = 0. Find the potential V(x, t). Then determine the potential for cases: (i) $V_0(t) = V_0 = \text{constant}$, and (ii) $V_0(t) = V_0 \cos \omega t$.
- 38. Solve the Blasius problem of an unsteady boundary layer flow in a semiinfinite body of viscous fluid enclosed by an infinite horizontal disk at z = 0. The governing equation, boundary, and initial conditions are

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial z^2}, \quad z > 0, \qquad t > 0,$$
$$u(z,t) = Ut \quad \text{on} \quad z = 0, \qquad t > 0,$$
$$u(z,t) \to 0 \quad \text{as} \quad z \to \infty, \qquad t > 0,$$
$$u(z,t) = 0 \quad \text{at} \quad t \le 0, \qquad z > 0.$$

Explain the implication of the solution.