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The complex conjugate is important because it permits us to switch from complex
to real. Indeed, by multiplication, zz = x% + y2 (verify!). By addition and subtraction,

z+E=2nz—

Z = 2iy. We thus obtain for the real part x and the imaginary part y

(not iy!) of z = x + iy the important formulas

1
(8) Rez=x=-2—(z+f),

1
Imz=)-'=§(1*'z')-

If z is real, z = x, then Z = z by the definition of Z, and conversely.
Working with conjugates is easy, since we have

(@1 +22) =7+ 2,

(21— 22) = % — Za

©) .

== 21 a1

(2129) = Z1Z0: (_—) — ey

29 I9

EXAMPLE 2 |Illustration of (8) and (9)
Letz;y =4 + 3iand zp = 2 + 5i. Then by (8),

I 1 4 430 43 _3:’+3r‘_3
mzy = o [« i) — ( i)] = TR

Also, the multiplication formula in (9) is verified by

(z320) = (4 + 302 + 50) = (=7 + 26i) = =7 — 26,

Z1Za = (4 = 3i)(2 = 5i) = =7 — 26i. 5]

1. (Powers of i) Show that i* = —1, % = —i, i* = 1,
P=dcradlVi=—-iL Uf=—-1,UB=1i--:
2. (Rotation) Multiplication by i is geometrically a
counterclockwise rotation through #/2 (90°). Verify
this by graphing z and iz and the angle of rotation for

z=2+2,z=-1-5i,z=4 — 3i.

(Division) Verify the calculation in (7).

(Multiplication) If the product of two complex numbers

is zero, show that at least one factor must be zero.

5. Show that z = x + iy is pure imaginary if and only
ifz= —z.

6. (Laws for conjugates) Verify (9) for z; = 24 + 10i,
za = 4 + 6i.

ol

7-15 COMPLEX ARITHMETIC

Letz; = 2 + 3iand z; = 4 — 5i. Showing the details
of your work, find (in the form x + iy):

7. (5z; +.32,)% 8. Zi%

9. Re(1/z,2) 10. Re (z3%). (Re z,)?
11, zp/z; 12. 7,/z5, (z4/29)

13. (42; — z3)?
15. (21 + z9)/(z3 — 23)

[16-19| Let z = x + iy. Find:
16. Im z?, (Im z)?

17. Re (1/3)

18. Im [(1 + i)%z2]

19. Re (1/3%)

14. ..;.:1;21, 21;21

20. (Laws of addition and multiplication) Derive the
following laws for complex numbers from the
corresponding laws for real numbers.
7+ 23 = 2+ 7 51Ze = 297y (Commurative laws)

(z1 +z2) + 23 =71 + (22 + 2z3),
(Associative laws)
(3122)23 = 21(3233)
21(ze + z3) = 2125 + 7123 (Distributive law)
0+z=z+0=_

zeriisgr= (~2) =0, zv1 =

a

+
=

ial
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hence the w corresponding to k = 0, etc. Consequently, V/z. for z # 0, has the n distinct

values
n n 6+ 2k 0+ 2k
(15) Vz=Vr (cos el + isin —E)
n n
where k = 0, 1, - - -, n — 1. These n values lie on a circle of radius \/r with center at

the origin and constitute the vertices of a regular polygon of n sides. The value of Vz
obtained by taking the principal value of arg z and k = 0 in (15) is called the principal
value of w = V7.

Taking z = 1 in (15), we have |z| = r = 1 and Arg z = 0. Then (15) gives

g % %
(16) \/TzcosTerfsinTw. B L, 56 b= B

These n values are called the nth roots of unity. They lie on the circle of radius 1 and
center 0, briefly called the unit circle (and used quite frequently!). Figures 324-326 show
Vi=1,-3+3V3i V1= =l +iand V1. _

If @ denotes the value corresponding to k£ = 1 in (16), then the n values of V/1 can be
written as

1, w, @ -, 0"

More generally, if w, is any ath root of an arbitrary complex number z (# 0), then the
n values of % in (15) are

(17) Wis Wy, w2, cee wio" !

because multiplying w, by " corresponds to increasing the argument of w, by 2km/n.
Formula (17) motivates the introduction of roots of unity and shows their usefulness.

il N b
w? w® ::)4

Fig.324. VA Fig. 325. VA Fig. 326. VA

POLAR FORM 1.3 —3i 2. 2i, —2i

Do these problems very carefully since polar forms will be 3. -5 d. 3 + tmi
needed frequently. Represent in polar form and graph in 1+

the complex plane as in Fig. 322 on p. 608. (Show the 5. C 6. 3V2 + 2

details of your work.) L ~J T A~ B
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- -6 + 5i 8 2+ 3i
’ 3i 5+ 4i
9-15| PRINCIPAL ARGUMENT

Determine the principal value of the argument.

9, —1 — i 10. =20 + i, =20 — i
11. 4 = 3i 12, — &2
13. 7 £ 7i 14. (1 + H2

15. (9 + 9i)®

(1620 CONVERSION TO x + iy

Re_presenl in the form x + iy and graph it in the complex
plane.

17. 3(cos 0.2 + i sin 0.2)
19. cos(—1) + isin(—1)

16. cos i + i sin (£3m)
18. 4(cosia =+ isinim)
20. 12(cos 37 + i sindm)

21-25

_ ROOTS
Find and graph all roots in the complex plane.

21. V=i 22. V1
23. V=1 24. V3 + 4i
25. V-1

26. TEAM PROJECT. Square Root. (a) Show that
w = Vz has the values

: ] 0
w = Vr [cos 7 + i sin _;:| i

f
(18) wy = Vr |:cos (*— + n—) + i sin (E B -n-)il

= TWq.

2|

(b) Obtain from (18) the often more practical formula

(19) Vz = £[Vi(lz| +x) + sign»iV(|z] +x)]

where signy = 1 if y = 0, signy = —1ify < 0,
and all square roots of positive numbers are taken
with positive sign. Hinr: Use (10) in App. A3.1 with
x = 6/2.

(¢) Find the square roots of 4i, 16 — 30i, and
9 + 8V7i by both (18) and (19) and comment on the
work involved.

(d) Do some further examples of your own and apply
a method of checking your results.

[27-30| EQUATIONS

Solve and graph all solutions, showing the details:

27. z2 — (8 — 5i)z + 40 — 20i = 0 (Use (19).)

28. 2% + (5 — 14i)22 — (24 + 100)) = 0

29. 822 — (36 — 6z + 42— 11i=0

30. z* + 16 = 0. Then use the solutions to factor z* + 16
into quadratic factors with real coefficients.

31. CAS PROJECT. Roots of Unity and Their Graphs.
Write a program for calculating these roots and for
graphing them as points on the unit circle. Apply the
programtoz" = | withn = 2.3, - -, 10. Then extend
the program to one for arbitrary roots, using an idea
near the end of the text, and apply the program to
examples of your choice.

[32-35| INEQUALITIES AND AN EQUATION
Verify or prove as indicated.

32. (Re and Im) Prove |[Re z| = |z], [Imz| = |z
33. (Parallelogram equality) Prove

|21 + 2z + |21 — 22 = 2|z + |2o]).
Explain the name.
34. (Triangle inequality) Verify (6) forz; = 4 + 7i,
Za = 5 + 2i.
35. (Triangle inequality) Prove (6).

13.3 Derivative. Analytic Function

Our study of complex functions will involve point sets in the complex plane. Most
important will be the following ones.

Circles and Disks. Half-Planes

The unit circle |z| = 1 (Fig. 327) has already occurred in Sec. 13.2. Figure 328 shows a
general circle of radius p and center a. Its equation is

z—da=p
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Analytic Function 617

Surprising as Example 4 may be. it merely illustrates that differentiability of a complex
function is a rather severe requirement.

The idea of proof (approach of z from different directions) is basic and will be used
again as the crucial argument in the next section.

Analytic Functions

Complex analysis is concerned with the theory and application of “analytic functions,”
that is, functions that are differentiable in some domain, so that we can do “calculus in
complex.” The definition is as follows.

Analyticity

A function f(z) is said to be analytic in a domain D if f(z) is defined and
differentiable at all points of D. The function f(z) is said to be analytic at a point
z = zg in D if f(z) is analytic in a neighborhood of z,.

Also, by an analytic function we mean a function that is analytic in some domain.

Hence analyticity of f(z) at zo means that f(z) has a derivative at every point in some
neighborhood of zy (including z, itself since. by definition, zy is a point of all its
neighborhoods). This concept is motivated by the fact that it is of no practical interest if
a function is differentiable merely at a single point zy but not throughout some
neighborhood of z;. Team Project 26 gives an example.

A more modern term for analytic in D is holomorphic in D.

Polynomials, Rational Functions

The nonnegative integer powers 1, z, z%, - - - are analytic in the entire complex plane. and so are polynomials,
that is, functions of the form

f@) =co+ e1z + caz® + -+ + 2"
where ¢q, * - * . ¢;, are complex constants.

The quotient of two polynomials g(z) and h(z),
2(2)

flz) = T:)' S
is called a rational function. This f is analytic except at the points where /i(z) = 0; here we assume that common
factors of g and h have been canceled.
Many further analytic functions will be considered in the next sections and chapters. uil

The concepts discussed in this section extend familiar concepts of calculus. Most important
is the concept of an analytic function, the exclusive concern of complex analysis. Although
many simple functions are not analytic, the large variety of remaining functions will yield
a most beautiful branch of mathematics that is very useful in engineering and physics.

1-10| CURVES AND REGIONS OF o<|z—-1<1 4, — < Rez<w

PRACTICAL

INTEREST 5. Imz2=2 6. Rez > —1

Find and sketch or graph the sets in the complex plane given

by
L|z—-3-2i=%

Tle+1)=|z-1| 8 |Argz| = 37
21=|z-1+4i=5 9. Rez = Im: 10. Re (1/z7) < 1
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11. WRITING PROJECT. Sets in the Complex Plane.
Extend the part of the text on sets in the complex plane
by formulating that part in your own words and
including examples of your own and comparing with
calculus when applicable.

COMPLEX FUNCTIONS AND DERIVATIVES

[12-15 | Function Values. Find Re f and Im f. Also find
their values at the given point z.
12. f=3z22—6z+ 3i, =2+ i

i

Mz +1hz=4-=75

13 = !
4. f=1/(1~-2),z=3+3i
15. f=uz2,z=1+i

|16-19 Continuity. Find out (and give reason) whether
f(z) is continuous at z = 0 if f(0) = 0 and for z # 0 the
function f is equal to:

16. [Re (z%)]/|z|? 17. [Im (z®))/|z]

18. 2|2 Re (1/2) 19. (Im 2)/(1 — |2])
|20-24|  Derivative. Differentiate

20. (2 - NN+ 1) 2L (z® +i)?
22. 3z + 4i)/(1.5iz — 2) 23 il(1 — 2)®
4, iz +i)?

25. CAS PROJECT. Graphing Functions. Find and
graph Re f, Im f, and |f| as surfaces over the z-plane.
Also graph the two families of curves Re f(z) = const
and Im f(z) = const in the same figure, and the curves
|f(z)] = const in another figure, where (a) f(z) = %
(b) f(z) = 1/z, () fz) = z*

TEAM PROJECT. Limit, Continuity, Derivative
(a) Limit. Prove that (1) is equivalent to the pair of
relations

26

lim Re f(z) = Re I, zh“;' Im f(z) = Im /.
=g —*Zg

(b) Limit. If ]im f(z) exists, show that this limit is

unique. i

(c) Continuity. If z;, z5. - * - are complex numbers for

which lim z, = a, and if f(z) is continuous at
e

z = a. show that lim f(z,)) = f(a).

(d) Continuity. If f(z) is differentiable at z,, show that
f(z) is continuous at z;.

(e) Differentiability. Show that f(z) = Rez = x is
not differentiable at any z. Can you find other such
functions?

(f) Differentiability. Show that f(z) = |[z[> is
differentiable only at z = 0; hence it is nowhere analytic.

13.4 Cauchy—Riemann Equations.

Laplace’s Equation

The Cauchy-Riemann equations are the most important equations in this chapter and
one of the pillars on which complex analysis rests. They provide a criterion (a test) for
the analyticity of a complex function

w = f(z) = ul(x, y) + iv(x, y).

Roughly, f is analytic in a domain D if and only if the first partial derivatives of « and
v satisfy the two Cauchy-Riemann equations*

(1) Uy =10

ur y x

4The French mathematician AUGUSTIN-LOUIS CAUCHY (see Sec. 2.5) and the German mathematicians
BERNHARD RIEMANN (1826-1866) and KARL WEIERSTRASS (1815-1897; see also Sec. 15.5) are the
founders of complex analysis. Riemann received his Ph.D. (in 1851) under Gauss (Sec. 5.4) at Gittingen, where
he also taught until he died, when he was only 39 years old. He introduced the concept of the integral as it is
used in basic calculus courses, and made important contributions to differential equations, number theory, and
mathematical physics. He also developed the so-called Riemannian geometry, which is the mathematical
foundation of Einstein's theory of relativity: see Ref. [GR9] in App. 1.
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Example 4 illustrates that a conjugate of a given harmonic function is uniquely determined
up to an arbitrary real additive constant.

The Cauchy—Riemann equations are the most important equations in this chapter. Their
relation to Laplace’s equation opens wide ranges of engineering and physical applications,

as we shall show in Chap. 18.

PROBLEM SET 13.4

1-10| CAUCHY-RIEMANN EQUATIONS

Are the following functions analytic? [Use (1) or (7).]

L f(z) = 2* 2. f(z) = Im (z?)

3. e¥(cosy +isiny) 4 f(2) =1/ —zH

6. f(z) = Arg 7wz

8 f(z) =In|z] +iArgz
10. f(z) = 2% + 1/z2

5. e (cos vy — i siny)
7. flz) = Rez + Imz
9. f(z) = il®

11. (Cauchy-Riemann equations in polar form) Derive
(7) from (1).

{12-21| HARMONIC FUNCTIONS

Are the following functions harmonic? If your answer is
yes, find a corresponding analytic function
f(2) = ulx. y) + iv(x, y).

12. u = xy 13. v = xy

4. v = —y/(x® + y*) 15 u = In|g|

16. v = In |z 17. u = x% — 3xy?

18. u = /(x> + y?) 19. v = (x? — y%)?

20. u = cos x cosh v 21. u = ™" sin 2y

22-24 Determine a, b, ¢ such that the given functions

are harmonic and find a harmonic conjugate.

22,
24,

25.

26.

27.

28.

13.5 Exponential Function

u = e* cos ay

u = ax® + by?

23, u = sin x cosh cy

(Harmonic conjugate) Show that if « is harmonic and
v is a harmonic conjugate of u, then u is a harmonic
conjugate of —uv.

TEAM PROJECT. Conditions for f(z) = const. Let
f(z) be analytic. Prove that each of the following
conditions is sufficient for f(z) = const.

(a) Re f(z) = const

(b) Im f(z) = const

© (=0

(d) |f(z)| = const (see Example 3)

(Two further formulas for the derivative). Formulas
(4), (5), and (11) (below) are needed from time to time.
Derive

an 'z =u, —

CAS PROJECT. Equipotential Lines. Write a
program for graphing equipotential lines u = const of
a harmonic function « and of its conjugate v on the
same axes. Apply the program to (a) u = x% — y%,
v = 2xy, b)) u = x* — 3xy% v = 3x%y — ¥
(Chu = e¢*cosy, v = e” siny.

“‘gs ‘!rr((-.J = Uu + f-Uz.

In the remaining sections of this chapter we discuss the basic elementary complex
functions, the exponential function, trigonometric functions, logarithm, and so on. They
will be counterparts to the familiar functions of calculus, to which they reduce when
z = x is real. They are indispensable throughout applications, and some of them have
interesting properties not shared by their real counterparts.

We begin with one of the most important analytic functions, the complex exponential

function

4

e,

also written

exp z.

The definition of e* in terms of the real functions e*, cos v, and sin y is

(1)

& = ¢%(cosy + isiny).
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To solve the equation ¢ = 3 + 4, note first that |[¢*| = ¢® = 5, x = In5 = 1.609 is the real part of all
solutions. Now, since e* = 5,
e‘cosy = 3. e“siny =4, cosy =06, siny =08, y=0.927.

Ans. z = 1.609 + 0.927i = 2nmi (n = 0, 1. 2, - - ). These are infinitely many solutions (due to the periodicity
of ¢°). They lie on the vertical line x = 1.609 at a distance 27 from their neighbors. 5

To summarize: many properties of ¢* = exp z parallel those of e an exception is the
periodicity of ¢ with 27i, which suggested the concept of a fundamental region. Keep in
mind that e* is an entire function. (Do you still remember what that means?)

1. Using the Cauchy—Riemann equations, show that e is 18-21| Equations. Find all solutions and graph some of

entire. them in the complex plane.
18. ¢ = 4 19. ¢ = =2
\2;H| Values of ¢°. Compute ¢° in the form « + iv and 20. ¢* = 0 2. &5= 4 — 3
|e*|, where z equals:
2 B 3.1+ 2i 22. TEAM PROJECT. Further Properties of the
4.3 — L 5. 7mil2 Exponential Function. (a) Analyticity. Show that
" 2 : is entire. What about ¢*? ¢? ¢™(cos ky + i sin ky)?
6. (1 +im 7. 0.8 — 5i (Use the Cauchy-Riemann equations.)
8. 97i/2

2 Real and Imaginary Parts. Find Re and Im of:

(b) Special values. Find all z such that (i) e is real,

(i) [e~%| < 1, (iii) €F = €.

(¢) Harmonic function. Show that

-2z 23
% @ 3 10 u = e cos (x3/2 — y%/2) is harmonic and find a
. et 2. el!: B

11. 1 conjugate.
|13-17|  Polar Form. Write in polar form: (d). Anilimoneas, !t iy Aiterpsting AL #{g) ~ o st

P ) uniquely  determined by the two properties
8 & L ) flx +i0) = e and f'(z) = f(z), where f is assumed
15. Vz 16. 3 + 4i to be entire. Prove this using the Cauchy-Riemann
17. =9 equations.

13.6 Trigonometric and Hyperbolic Functions

Just as we extended the real e” to the complex ¢* in Sec. 13.5, we now want to extend
the familiar real trigonometric functions to complex trigonometric functions. We can do
this by the use of the Euler formulas (Sec. 13.5)

e” = cos x + i sinx, e™™ = cosx — isinax.

By addition and subtraction we obtain for the real cosine and sine

1 ; ; 1 ) ;
cos x = 7 (e + ™), sinx = — (e — ¢™ ).

2i

This suggests the following definitions for complex values z = x + iy:
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sinh z cosh z
tanh z = g cothz = — y
cosh z sinh z
(13)
h & h L
sechz = - cschz = — P
& cosh z * sinh z

Complex Trigonometric and Hyperbolic Functions Are Related. 1f in (11), we replace
z by iz and then use (1), we obtain

(14) cosh iz = cos z, sinh iz = i sin z.

Similarly, if in (1) we replace z by iz and then use (11), we obtain conversely

(15) cos iz = cosh z, sin iz = i sinh z.

Here we have another case of unrelated real functions that have related complex analogs,
pointing again to the advantage of working in complex in order to get both a more unified
formalism and a deeper understanding of special functions. This is one of the main reasons
for the importance of complex analysis to the engineer and physicist.

1. Prove that cosz, sinz, coshz, sinhz are entire
functions.

2. Verify by differentiation that Re cos z and Im sin z are
harmonic.

|3—6 FORMULAS FOR HYPERBOLIC FUNCTIONS
Show that

3. coshz = coshx cosy + i sinhx siny

sinh z = sinh x cos y + i cosh x sin y.

4. cosh(zy; + z5) = cosh z; cosh z, + sinh z; sinh z,

sinh (z; + z5) = sinh z; cosh zy + cosh z; sinh z,.

5. cosh®z — sinh®z = 1
6. cosh®z + sinh® z = cosh 2z

7-15  Function Values. Compute (in the form u + iv)
7. cos (1 + i) 8. sin(1 + i)

9. sin 5i, cos 5i 10. cos 3i

11. cosh (=2 + 3i), cos (—3 — 2i)

12. —i sinh (—7 + 2i), sin (2 + i)

13. cosh(Zn + Dwi,n=1,2, -« -

14. sinh (4 — 3i) 15. cosh (4 — 67i)

16. (Real and imaginary parts) Show that

Ret sin x cos x
etang = ——————
cosZx + sinh?y
sinh y cosh y
Imtanz =

cos? x + sinh®y °

17-21| Equations. Find all solutions of the following

equations.

17. coshz =0 18. sinz = 100
19. cosz = 2i 20. coshz = —1
21. sinhz =0

22. Find all z for which (a) cos z, (b) sin z has real values.

Equations and Inequalities. Using the

definitions, prove:

23. cosz is even, cos(—z) = cosz, and sinz is odd,
sin(—z) = —sinz.

24. [sinh y| = |cos z| = cosh y, [sinh y| = |sin z| = cosh y.
Conclude that the complex cosine and sine are not
bounded in the whole complex plane.

25. sinz; cos zp = 3[sin (z; + z5) + sin (z; — 29)]
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Ife=n=1,2 -, then " is single-valued and identical with the usual nth power
of z. If ¢ = —1, =2, - - -, the situation is similar.
If ¢ = 1/n, where n = 2, 3, - -+ -, then
7,2 % = U Inz (z # 0)

the exponent is determined up to multiples of 27ri/n and we obtain the n distinct values
of the nth root, in agreement with the result in Sec. 13.2. If ¢ = p/q, the quotient of two
positive integers, the situation is similar, and z¢ has only finitely many distinct values.
However, if ¢ is real irrational or genuinely complex, then z° is infinitely many-valued.

EXAMPLE I General Power

it ="M = exp(ilni) = exp [a(

All these values are real, and the principal value (n = 0) is e~

ol

i+ zﬂm)] = e—(n‘f2)22n1:‘

w2

Similarly, by direct calculation and multiplying out in the exponent,

0+ =exp[@=iIn(l + 0] =exp [2 = b (In V2 + imi = 2n7i)

= Ze”ﬂzznw[sin (31n2) + icos (3 In2)]. [iE]

It is a convention that for real positive z = x the expression z° means e '™ * where In x
is the elementary real natural logarithm (that is, the principal value Lnz (z = x > 0) in
the sense of our definition). Also, if z = e, the base of the natural logarithm, z° = & is
conventionally regarded as the unique value obtained from (1) in Sec. 13.5.

From (7) we see that for any complex number a,

(8)

az:ez!na’

We have now introduced the complex functions needed in practical work, some of them
(€%, cos z, sin z, cosh z, sinh z) entire (Sec. 13.5), some of them (tan z, cot z, tanh z, coth z)
analytic except at certain points, and one of them (In z) splitting up into infinitely many
functions, each analytic except at 0 and on the negative real axis.

For the inverse trigonometric and hyperbolic functions see the problem set.

[1-9|  Principal Value Ln z. Find Ln z when z equals:
1. —10 2.2+2
3 2-=2 4. =5 = 0.1i
5 =3=4& 6. —100
7. 0.6 + 0.8/ 8. —ei
9. 1—i

[10-16]  All Values of Inz. Find all values and graph
some of them in the complex plane.

10. In 1 11. In(—1)

12. Ine 13. In(—6)
14. In (4 + 3i) 15. In(—e™H
16. In (¢*")

17. Show that the set of values of In (/%) differs from the
set of values of 2 In i.

18-21|  Equations. Solve for z:
18. Inz = (2 — 3i)ar 19. Inz = 0.3 + 0.7

20. Inz=e— i 2. Inz =2 + imi
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2228

General Powers. Showing the details of your
work, find the principal value of:

22, %, 2 23, 4311
24, (1 — i 25. (1 +
26. (—1)—2 27, 2

28. (3 — 43

29. How can you find the answer to Prob. 24 from the
answer to Prob. 257

30. TEAM PROJECT. Inverse Trigonometric and
Hyperbolic Functions. By definition, the inverse sine
w = arcsin z is the relation such that sinw = z. The
inverse cosine w = arccos z is the relation such that
cos w = z. The inverse tangent, inverse cotangent,
inverse hyperbolic sine, etc., are defined and denoted
in a similar fashion. (Note that all these relations are
multivalued.) Using sinw = (e — ¢~%)/(2i) and
similar representations of cos w, etc., show that

—QUESTIONS

CHAP.13 Complex Numbers and Functions

(a) arccosz = —iln(z + Vz2 - 1)
(b) arcsinz = —iln(iz + V1 — 2%
(¢) arccoshz=In(z+ V=2—-1)

(d) arcsinhz = In(z + V22 + 1)

i I+ z
(e) arctan.-:=;ln_
“ = &
1 1 +z
tanhz = — |
(f) arctan 2n1_:

(g) Show that w = arcsin z is infinitely many-valued,
and if w, is one of these values. the others are of the
formw, = 2nmand # —w; = 2nm,n=20,1,---.
(The principal value of w = u + iv = arcsinz is
defined to be the value for which —#/2 = u = /2
ifv=0and —7/2 < u < w2ifv<0.)

AND PROBLEMS

1. Add, subtract, multiply. and divide 26 — 7i and

3 + 4i as well as their complex conjugates.

2. Write the two given numbers in Prob. | in polar form.
Find the principal value of their arguments.

3. What is the triangle inequality? Its geometric meaning?
Its significance?

4. If you know the values of V1, how do you get from
them the values of ¥z for any z?

5. State the definition of the derivative from memory. It
looks similar to that in calculus. But what is the big
difference?

6. What is an analytic function? How would you test for
analyticity?

7. Can a function be differentiable at a point without being
analytic there? If yes, give an example.

8. Are [z, Z, Re z. Im z analytic? Give reason.

9. State the definitions of €, cos z, sin z, cosh z, sinh z and
the relations between these functions. Do these relations

have analogs in real?

.

10. What properties of ¢ are similar to those of ¢ ? Which
one is different?

11. What is the fundamental region of ¢* ? Iis significance?
12. What is an entire function? Give examples.

13. Why is In z much more complicated than In x? Explain
from memory.
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15. How is the general power z° defined? Give examples.

What is the principal value of In z?

Iﬁ-:l] Complex Numbers. Find, in the form x + iy,
showing the details:
16. (1 + )2
18. 1/(3 — 7i)

17. (=2 + 6i)?
19. (1 — D/ + )P

20. V-5 —12i 21. (43 — 190)/(8 + 1)
I22—26 Polar Form. Represent in polar form, with the

principal argument:

22. 1 — 3i 23, —6 + 6i
24. V20/(4 + 2i) 25. —12i

26. 2 + 2i

|@ Roots. Find and graph all values of
27. Vi 28. V256

29. V=1 30. V32 — 24

31-35|  Analytic Functions. Find f(z) = u(x,y) + iv(x, v)
with u or v as given. Check for analyticity.

3L u = 22 + y?) 32. v = ¢~ 3% 5in 3y

33 u=x% — 2xy — y? 34. u = cos2x cosh 2y
35.0 = eV sin 2xy

’Tﬁj‘_ﬂ Harmonic Functions. Are the following
functions harmonic? If so, find a harmonic conjugate.

36. x2y? 37. xy

38. e *'% cos 3y 39. x2 + y?

40-45|  Special Function Values. Find the values of
40. sin (3 + 4i) 41. sinh 477

42, cos (57 + 2i) 43. Ln (0.8 + 0.61)

44, tan (1 + i) 45. cosh (1 + i)
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EXAMPLE 6 A Geometric Application

Geometric problems may also lead to initial value problems. For instance, find the curve through the point
(1, 1) in the xy-plane having at each of its points the slope —y/x.

Solution. The slope y' should equal —y/x. This gives the ODE y' = —yl/x. Its general solution is y = ¢/x
(see Example 1). This is a family of hyperbolas with the coordinate axes as asymptotes.

Now, for the curve to pass through (1, 1). we must have y = | when x = |. Hence the initial condition is
¥(1) = 1. From this condition and y = ¢fx we get ¥(1) = ¢/1 = 1; that is, ¢ = 1. This gives the particular
solution ¥ = 1/x (drawn somewhat thicker in Fig. 5). [ |

/
\

Fig. 5. Solutions of y = —y/x (hyperbolas)

(14| CALCULUS
Solve the ODE by integration.

1.y = —sin mx 2. =g
3y = xe*2 4. v' = cosh 4x
[59] VERIFICATION OF SOLUTION

State the order of the ODE. Verify that the given function
is a solution. (a, b, ¢ are arbitrary constants.)
y = tan (x + ¢)

y = a cos wx + b sin wx

8.y +2y=4(x+ 1% y=5F+2u%+ 2+ 1
9. y" = cos x,

10-14| INITIAL VALUE PROBLEMS

Verify that y is a solution of the ODE. Determine from y
the particular solution satisfying the given initial condition.
Sketch or graph this solution.

10. ¥ = 0.5y, y = ce®%, y(2) =2

11. v/ =1 +4y% y=2tan Qv + ¢). y0) =0
12. y' =y —x, y=ce®+x+1, y0) =3

13. y" + 2xy =0, y= ce™", ¥(1) = 1/e

0) = §m

y = —sinx + ax® + bx + ¢

14. y' = ytanx, y = ¢ secux,

=5

Fig. 6. Particular solutions and singular

solution in Problem 16

15. (Existence) (A) Does the ODE y'2 = —1 have a (real)
solution?

(B) Does the ODE |y| + |y| = 0 have a general
solution?

16. (Singular solution) An ODE may sometimes have an
additional solution that cannot be obtained from the
general solution and is then called a singular solution.
The ODE y'2 — xy' + y = 0 is of the kind. Show by
differentiation and substitution that it has the general
solution y = ex — ¢” and the singular solution y = x%/4.
Explain Fig. 6.

17-22| MODELING, APPLICATIONS

The following problems will give you a first impression of
modeling. Many more problems on modeling follow
throughout this chapter.

17. (Falling body) If we drop a stone, we can assume air
resistance (“drag”) to be negligible. Experiments show
that under that assumption the acceleration y" = d?y/dr?
of this motion is constant (equal to the so-called
acceleration of gravity g = 9.80 m/sec® = 32 ft/sec?).
State this as an ODE for y(), the distance fallen as a
function of time . Solve the ODE to get the familiar
law of free fall, y = gr%/2.
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18.

19.

20.

21.

(Falling body) If in Prob. 17 the stone starts at r = 0
from initial position v, with initial velocity v = vy,
show that the solution is y = g*/2 + vot + yo. How
long does a fall of 100 m take if the body falls from
rest? A fall of 200 m? (Guess first.)

(Airplane takeoff) If an airplane has a run of 3 km,
starts with a speed 6 m/sec., moves with constant
acceleration, and makes the run in | min, with what
speed does it take off?

(Subsonic flight) The efficiency of the engines of
subsonic airplanes depends on air pressure and usually
is maximum near about 36 000 ft. Find the air pressure
y(x) at this height without calculation. Physical
information. The rate of change v'(x) is proportional
to the pressure, and at 18 000 ft the pressure has
decreased to half its value v, at sea level.

(Half-life) The half-life of a radioactive substance is
the time in which half of the given amount disappears.
Hence it measures the rapidity of the decay. What

is the half-life of radium ggRa??® (in years) in
Example 57

22. (Interest rates) Show by algebra that the investment y(r)

from a deposit y, after r years at an interest rate r is

Val) = yoll + r]°  (Interest compounded annually)

yal) = yoll + (1/365)]%5%
(Interest compounded daily).

Recall from calculus that
1+ (1/n)]"— easn— =

hence [1 + (1/n)]™ — €™; thus

i

Ye(t) = voe' (Interest compounded continuously).

What ODE does the last function satisfy? Let the
initial investment be $1000 and r = 6%. Compute the
value of the investment after | year and after 5 years
using each of the three formulas. Is there much
difference?

1.2 Geometric Meaning of y' = f(x, y).

Direction Fields

A first-order ODE

(1)

y'= 1@ )

has a simple geometric interpretation. From calculus you know that the derivative y'(x)
of y(x) is the slope of y(x). Hence a solution curve of (1) that passes through a point
(X0, Yo) must have at that point the slope y'(xp) equal to the value of f at that point; that is,

y'(x0) = Flxo, Yo).

Read this paragraph again before you go on, and think about it.

It follows that you can indicate directions of solution curves of (1) by drawing short
straight-line segments (lineal elements) in the xy-plane (as in Fig. 7a) and then fitting
(approximate) solution curves through the direction field (or slope field) thus obtained.
This method is important for two reasons.

1. You need not solve (1). This is essential because many ODEs have complicated
solution formulas or none at all.

2. The method shows, in graphical form, the whole family of solutions and their typical
properties. The accuracy is somewhat limited, but in most cases this does not matter.

Let us illustrate this method for the ODE

(2) vy =y
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1. (Constant of integration) An arbitrary constant of
integration must be introduced immediately when the
integration is performed. Why is this important? Give
an example of your own.

[2-9] GENERAL SOLUTION

Find a general solution. Show the steps of derivation. Check
your answer by substitution.

2.y +(x+2y%=0

3.y =2sec2y

4.y =(y+9)? (y+9%=10)
5.9y +36x=0

6. y' = (4x% + v /(xv)

7. y' sin mx = y cos mx

8. xy' =% +y

=]

Ly e™ = y2 + ]

[10-19] INITIAL VALUE PROBLEMS

Find the particular solution. Show the steps of derivation,

beginning with the general solution. (L, R, b are constants.)

10. yy' + 4x = 0, y(0) = 3

11. drldt = =2tr, r(0) = ry

12. 2xyy" = 3y2 + %, y(1) = 2

13. L dlldt + Rl = 0, I(0) = I,

14. y' = yix + (2x%/y) cos(x?), _\;{\/1;?2—) =Vr

15. €2y’ = 2(x + 2)y®, y(0) = 1/V5 = 0.45

16. xy" = y + 4x® cos?(v/x), ¥(2) = 0

17. y'x Inx = y, y(3) = In 81

18. dr/d® = b[(dr/dB) cos 0 + r sin 0), r3m) = 7.
0<bh<l

19. yy' = (x — De™, y(0) = 1

20. (Particular solution) Introduce limits of integration in
(3) such that y obtained from (3) satisfies the initial
condition y(xg) = vo. Try the formula out on Prob. 19.

!'ji_ﬁi.-'.'j APPLICATIONS, MODELING

21. (Curves) Find all curves in the xy-plane whose
tangents all pass through a given point (a, b).

22, (Curves) Show that any (nonvertical) straight line
through the origin of the xy-plane intersects all solution
curves of y' = g(y/x) at the same angle.

23. (Exponential growth) If the growth rate of the amount
of yeast at any time 7 is proportional to the amount
present at that time and doubles in 1 week. how much
yeast can be expected after 2 weeks? After 4 weeks?

24. (Population model) If in a population of bacteria the
birth rate and death rate are proportional to the number

25.

26.

27

28

29.

31.

32.

of individuals present, what is the population as a
function of time? Figure out the limiting situation for
increasing time and interpret it.

(Radiocarbon dating) If a fossilized tree is claimed to
be 4000 years old, what should be its zC'* content
expressed as a percent of the ratio of zC* to ¢C'2 in a
living organism?

(Gompertz growth in tumors) The Gompertz model
is y' = —Ay Iny (A > 0), where y(r) is the mass of
tumor cells at time . The model agrees well with
clinical observations. The declining growth rate with
increasing y > 1 corresponds to the fact that cells in
the interior of a tumor may die because of insufficient
oxygen and nutrients, Use the ODE to discuss the
growth and decline of solutions (tumors) and to find
constant solutions. Then solve the ODE.

(Dryer) If wet laundry loses half of its moisture
during the first 5 minutes of drying in a dryer and if
the rate of loss of moisture is proportional to the
moisture content, when will the laundry be practically
dry, say, when will it have lost 95% of its moisture?
First guess.

(Alibi?) Jack, arrested when leaving a bar, claims that
he has been inside for at least half an hour (which
would provide him with an alibi). The police check the
water temperature of his car (parked near the entrance
of the bar) at the instant of arrest and again 30 minutes
later, obtaining the wvalues 190°F and 110°F,
respectively. Do these results give Jack an alibi? (Solve
by inspection.)

(Law of cooling) A thermometer. reading 10°C, is
brought into a room whose temperature is 23°C. Two
minutes later the thermometer reading is 18°C. How
long will it take until the reading is practically 23°C,
say, 22.8°C? First guess.

(Torricelli’s law) How does the answer in Example 5
(the time when the tank is empty) change if the
diameter of the hole is doubled? First guess.

(Torricelli’s law) Show that (7) looks reasonable
inasmuch as V2gh(1) is the speed a body gains if it
falls a distance i (and air resistance is neglected).

(Rope) To tie a boat in a harbor, how many times must
a rope be wound around a bollard (a vertical rough
cylindrical post fixed on the ground) so that a man
holding one end of the rope can resist a force exerted
by the boat one thousand times greater than the man
can exert? First guess. Experiments show that the
change AS of the force S in a small portion of the rope
is proportional to S and to the small angle A¢ in Fig.
13. Take the proportionality constant (.15,
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33

g

35.

Small
portion
of rope

Problem 32

Fig. 13.

(Mixing) A tank contains 800 gal of water in which
200 Ib of salt is dissolved. Two gallons of fresh water
runs in per minute, and 2 gal of the mixture in the tank,
kept uniform by stirring, runs out per minute. How
much salt is left in the tank after 5 hours?
WRITING PROJECT. Exponential Increase, Decay,
Approach. Collect, order, and present all the information
on the ODE y" = ky and its applications from the text
and the problems. Add examples of your own.

CAS EXPERIMENT. Graphing Solutions. A CAS
can usually graph solutions even if they are given by
integrals that cannot be evaluated by the usual methods
of calculus. Show this as follows.

36.

19

(A) Graph the curves for the seven initial value
2

problems y" = e, y(0) = 0, =1, =2, =3, common

axes. Are these curves congruent? Why?

(B) Experiment with approximate curves of nth partial

sums of the Maclaurin series obtained by termwise

integration of that of y in (A); graph them and describe

qualitatively the accuracy for a fixed interval

(0 = x = b and increasing n, and then for fixed n and

increasing b.

(C) Experiment with y' = cos (x?) as in (B).

(D) Find an initial value problem with solution

y= e"zj ¢~ dt and experiment with it as in (B).
(4]

TEAM PROJECT. Torricelli’s Law. Suppose that
the tank in Example 5 is hemispherical, of radius R,
initially full of water, and has an outlet of 5 cm? cross-
sectional area at the bottom. (Make a sketch.) Set up
the model for outflow. Indicate what portion of your
work in Example 5 you can use (so that it can become
part of the general method independent of the shape of
the tank). Find the time ¢ to empty the tank (a) for any
R, (b) for R = 1 m. Plot 1 as function of R. Find the
time when i = R/2 (a) for any R, (b) for R = 1 m.

1.4 Exact ODEs. Integrating Factors

We remember from calculus that if a function u(x, y) has continuous partial derivatives,
its differential (also called its total differential) is

du
du = — dx +
ax

du
— dy.
dy

From this it follows that if u(x, y) = ¢ = const, then du = 0.
¢, then

2.3 _

For example, if u = x + x~y

du = (1 + 2xy*) dx + 3x*%dy =0

or

y

P @
dx

1+ 2xy®
BT

an ODE that we can solve by going backward. This idea leads to a powerful solution

method as follows.

A first-order ODE M(x, y) + N(x, y)y' = 0, written as (use dy = y' dx as in Sec. 1.3)

(1

M(x, v) dx + N(x, y) dv = 0
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Differentiate this with respect to y and use (4b) to get

i + dk N 5 dk
—_=x — = =x—e 3 _
dy dy dy

Hence the general solution is

ux, ) =e*+axy+eV=c

Step 3. Particular solution. The initial condition y(0) = 1 gives w(0, —1) = 1 + 0 + ¢ = 3.,72. Hence the
answer is e” + xy + e~ ¥ = | + ¢ = 3.72. Figure 15 shows several particular solutions obtained as level curves
of u(x, ¥y) = ¢, obtained by a CAS, a convenient way in cases in which it is impossible or difficult to cast a
solution into explicit form. Note the curve that (nearly) satisfies the initial condition.

Step 4. Checking. Check by substitution that the answer satisfies the given equation as well as the initial
condition.

B I".I I".\ I‘\ I".I\:\".I;':'|"'\\'I'

b9
T
—N—t R

\

e /I"
=% _———

Fig. 15, Particular solutions in Example 5

1-20| EXACT ODEs. INTEGRATING FACTORS 11. —ydx + xdy =0
Test for exactness. If exact, solve. If not, use an integrating 12, (Y — y)dx + (xe* Y + 1) dy = 0

factor as given or find it by inspection or from the theorems

— = i arpd
in the text. Also, if an initial condition is given, determine —Bydih Jray =10, FlGy)= pix

the corresponding particular solution. 4. *+y)dx —xydy =0, y2)=1
Lx2dx+3y*dy=0 2. (x — y)dx —dy) =0  15. e®*(2 cos y dx — siny dy) = 0, y0) =0

3. —a sin wx sinh y dx + cos mx coshy dy = 0 16. —sinxy (ydx + xdy) = 0, y(1) =

4. (e — ye®) dx + (xe¥ — ™) dy =0 17. (cos wx + w sin wx) dx + e dy = 0, y(0) =
5. 9xdx + d4ydy =20 18. (cos xy + x/y) dx + (1 + (x/y) cos xy) dy = 0
6. e“(cos y dx — siny dy) =0 19. e ¥dx+ e ™(—e?V+ 1)dy=0, F= gt
7. e 2 dr — 2re 2% df = 0 20. (siny cosy + x cos? yvydx + xdy =0

8. (2x+ 1y — yix¥) dx + 2y + Ux — xly¥) dy =0 -
5 ; 21. Under what conditions for the constants A, B, C, D is
9. (—y/x® + 2 cos 2x) dx + (1/x — 2 sin 2y) dy = 0 (Ax + By) dx + (Cx + Dy) dy = 0 exact? Solve

10. —2xy sin (x2) dx + cos (x2) dy = 0 the exact equation.
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CAS PROJECT. Graphing Particular Solutions
Graph particular solutions of the following ODE.
proceeding as explained.

1
21 vcosxdy + = dv =0

(a) Test for exactness. If necessary, find an integrating
factor. Find the general solution u(x, v) = c.

(b) Solve (21) by separating variables. Is this simpler
than (a)?

(c) Graph contours u(x, y) = ¢ by your CAS. (Cf. Fig.
16.)

|| lll

Fig. 16. Particular solutions in CAS Project 22

5 Linear ODEs.

by

(d) In another graph show the solution curves
satisfying v(0) = =1, £2, *3, 4. Compare the
quality of (¢) and (d) and comment.

(e) Do the same steps for another nonexact ODE of
your choice.

WRITING PROJECT. Working Backward. Start
from solutions u(x, v) = ¢ of your choice, find a
corresponding exact ODE, destroy exactness by a
multiplication or division. This should give you a feel
for the form of ODEs vou can reach by the method of
integrating factors. (Working backward is useful in
other areas. too: Euler and other great masters
frequently did it.)

. TEAM PROJECT. Solution by Several Methods.

Show this as indicated. Compare the amount of work.
(A) e’(sinh x dx + cosh x dy) = 0 as an exact ODE
and by separation.

(B) (I + 2x) cos y dx + dy/cos y = 0 by Theorem
2 and by separation.

(C) (x® + y?) dx — 2xy dy = 0 by Theorem 1 or 2
and by separation with v = v/x.

(D) 3x% y dx + 4x* dy = 0 by Theorems | and 2
and by separation.

(E) Search the text and the problems for further ODEs
that can be solved by more than one of the methods
discussed so far. Make a list of these ODEs. Find
further cases of your own.

Bernoulli Equation.
Population Dynamics

Linear ODEs or ODEs that can be transformed to linear form are models of various
phenomena, for instance, in physics, biology, population dynamics, and ecology. as we
shall see. A first-order ODE is said to be linear if it can be written

(1) ¥+ p(y = rx).

The defining feature of this equation is that it is linear in both the unknown function y
and its derivative y' = dy/dx, whereas p and r may be any given functions of x. If in an
application the independent variable is time, we write 7 instead of x.

If the first term is f(x)y’ (instead of y"), divide the equation by f(x) to get the “standard
form” (1), with y" as the first term, which is practical.

For instance, ¥’ cosx + y sinx = x is a linear ODE, and its standard form is
vy + ytanx = x sec x.

The function r(x) on the right may be a force, and the solution y(x) a displacement in
a motion or an electrical current or some other physical quantity. In engineering, r(x) is

frequently called the input, and y(x) is called the output or the response to the input (and,
if given, to the initial condition).
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EXAMPLE 5

CHAP.1 First-Order ODEs

Stable and Unstable Equilibrium Solutions. “Phase Line Plot”

The ODE y' = (y — D(y — 2) has the stable equilibrium solution y; = 1 and the unstable yo = 2, as the
direction field in Fig. 19 suggests. The values y; and y, are the zeros of the parabola f(y) = (y — (v — 2)
in the figure. Now, since the ODE is autonomous, we can “condense” the direction field to a “phase line plot™
giving vy and yo, and the direction (upward or downward) of the arrows in the field, and thus giving information

about the stability or instability of the equilibrium solutions. |
¥ylx) ¥
2.0 /
I /
1.5 /
[ B2 X
2212222215;::::::::: Lo
e e e e e ey S b ey
= WY E— ® \ /
e ol o 5 A\
et /,f,/////j;/// 05 \ /
IO PSR TS DA Yoy \ /
Tt \
4% b 2 b1 _fr s :'l' N :’- AR :l "' b i ] \13'1. 1 -)"2)_/ 1
-2 -1 0 g ‘g x 0 0.5 1w.0 25 30 x
(A) (B} ©
Fig.19. Example 5. (A) Direction field. (B) “Phase line”. (C) Parabola f(y)

A few further population models will be discussed in the problem set. For some more
details of population dynamics, see C. W. Clark, Mathematical Bioeconomics, New York,
Wiley, 1976.

Further important applications of linear ODEs follow in the next section.

1. (CAUTION!) Show that e™'®* = 1/x (not —x) and 6. x2y' + 3xy = l/x, y(1) = —
—~In(sec ¥} _ §
e Cos x. ' ' 7.9 + ky = e2k®

2. (Integration constant) Give a reason why in (4) you 8.y +2y=4cos2x, ylm =

may choose the constant of integration in [p dx to be

ZEro,

9. y' = 6(y — 2.5) tanh 1.5x

i 10. y' + 4x%y = (4x2 — x)e~ %12
[3-17] GENERAL SOLUTION. INITIAL VALUE 1L y' + 2y sin2x = 26592%, y(0) =
PROBLEMS ' i

) 12. y tanx = 2y — 8, y(zm =0
Find the general solution. If an initial condition is given, 13. v + 4 - g
find also the corresponding particular solution and graph or i ’ yeotZe = € bonls, yfam) =2
sketch it. (Show the details of your work.) 4.y + ytanx = e " cosx, y(0) =
3.y + 3.5y =28 15. y' + y/x® = 2xe', y(1) = 13.86

4.y =4y +x 16. y' cos®x + 3y = 1, y(mw) =4

5.y + 125y =5, y0)= 17. x%" + 3x%y = 5 sinh 10x



SEC.15 Linear ODEs. Bernoulli Equation. Population Dynamics 33
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24| NONLINEAR ODEs

-UE'lg a method of this section or separating variables, find
the general solution. If an initial condition is given, find
also the particular solution and sketch or graph it.

18.
19.
20.
21.
22,
23.
24,

yo+y =92 y0) = -1

vy =57y — 6.5y>

(x* + 1)y' = —tany, y(0) = 37
v+ (x+ Dy = ex2_v3. ¥(0) = 0.5
vy’ sin 2y + x cos 2y = 2x

2yy' + yZsinx = sinx, y(0) = V2
vy + x2y = (¢7* sinh x)/(3y?)

25-36

FURTHER APPLICATIONS

25. (Investment programs) Bill opens a retirement

26.

savings account with an initial amount y, and then adds
$k to the account at the beginning of every year until
retirement at age 65. Assume that the interest is
compounded continuously at the same rate R over the
years. Set up a model for the balance in the account
and find the general solution as well as the particular
solution, letting + = 0 be the instant when the account
is opened. How much money will Bill have in the
account at age 65 if he starts at 25 and invests $1000
initially as well as annually. and the interest rate R is
6%? How much should he invest initially and annually
(same amounts) to obtain the same final balance as
before if he starts at age 457 First, guess.

(Mixing problem) A tank (as in Fig. 9 in Sec. 1.3)
contains 1000 gal of water in which 200 Ib of salt is
dissolved. 50 gal of brine, each gallon containing
(1 + cos 1) Ib of dissolved salt, runs into the tank per
minute. The mixture, kept uniform by stirring, runs out
at the same rate. Find the amount of salt in the tank at
any time 1 (Fig. 20).

Yy

1000

500
200 -
0 5JD 160 t
Fig. 20.  Amount of salt y(t) in the tank in Problem 26
27. (Lake Erie) Lake Erie has a water volume of about

450 km? and a flow rate (in and out) of about 175 km®
per year. If at some instant the lake has pollution
concentration p = 0.04%. how long, approximately.
will it take to decrease it to p/2, assuming that the
inflow is much cleaner, say, it has pollution

29

g

31.

32.

33.

34.

concentration p/4, and the mixture is uniform (an
assumption that is only very imperfectly true)? First,
guess.

28. (Heating and cooling of a building) Heating and

cooling of a building can be modeled by the ODE
T' = k(T — T,) + ky(T — T,,) + P,

where T = T(7) is the temperature in the building at
time ¢, T, the outside temperature, T, the temperature
wanted in the building, and P the rate of increase of T
due to machines and people in the building, and k; and
ko are (negative) constants. Solve this ODE, assuming
P = const, T, = const, and T, varying sinusoidally
over 24 hours, say, T, = A — C cos (27/24)t. Discuss
the effect of each term of the equation on the solution.
(Drug injection) Find and solve the model for drug
injection into the bloodstream if, beginning at t = 0, a
constant amount A g/min is injected and the drug is
simultaneously removed at a rate proportional to the
amount of the drug present at time .

(Epidemics) A model for the spread of contagious
diseases is obtained by assuming that the rate of spread
is proportional to the number of contacts between
infected and noninfected persons, who are assumed to
move freely among each other. Set up the model. Find
the equilibrium solutions and indicate their stability or
instability. Solve the ODE. Find the limit of the
proportion of infected persons as t — > and explain
what it means.

(Extinction vs. unlimited growth) If in a population
¥(1) the death rate is proportional to the population, and
the birth rate is proportional to the chance encounters
of meeting mates for reproduction, what will the model
be? Without solving, find out what will eventually
happen to a small initial population. To a large one.
Then solve the model.

(Harvesting renewable resources. Fishing) Suppose
that the population y(r) of a certain kind of fish is given
by the logistic equation (8), and fish are caught at a
rate Hy proportional to y. Solve this so-called Schaefer
model. Find the equilibrium solutions y; and y, (> 0)
when H < A. The expression ¥ = Hy, is called the
equilibrium harvest or sustainable yield corresponding
to H. Why?

(Harvesting) In Prob. 32 find and graph the solution
satisfying y(0) = 2 when (for simplicity) A = B = 1
and A = 0.2. What is the limit? What does it mean?
What if there were no fishing?

(Intermittent harvesting) In Prob. 32 assume that you
fish for 3 years, then fishing is banned for the next 3
years. Thereafter you start again. And so on. This is
called intermittent harvesting. Describe qualitatively
how the population will develop if intermitting is
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continued periodically. Find and graph the solution for
the first 9 years, assuming that A = B = 1, H = 0.2,
and y(0) = 2.

b
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Fish population in Problem 34

35. (Harvesting) If a population of mice (in multiples of
1000) follows the logistic law with A = 1 and B = 0.25,
and if owls catch at a time rate of 10% of the population
present, what is the model, its equilibrium harvest for
that catch, and its solution?

36. (Harvesting) Do you save work in Prob. 34 if you first
transform the ODE to a linear ODE? Do this
transformation. Solve the resulting ODE. Does the
resulting y(r) agree with that in Prob. 34?

~ChCE ROPERTIES OF L INEAR OIDE<

These properties are of practical and theoretical importance

because they enable us to obtain new solutions from given

ones. Thus in modeling, whenever possible, we prefer linear

ODEs over nonlinear ones, which have no similar

properties.

Show that nonhomogeneous linear ODEs (1) and
homogeneous linear ODEs (2) have the following
properties. Illustrate each property by a calculation for two
or three equations of your choice. Give proofs.

37. The sum vy, + y, of two solutions y; and v, of the
homogeneous equation (2) is a solution of (2), and so
is a scalar multiple ay, for any constant a. These
properties are not true for (1)!

38. y = 0 (that is, y(x) = 0 for all x, also written y(x) = 0)
is a solution of (2) [not of (1) if r(x) # 0!]. called the
trivial solution.

39. The sum of a solution of (1) and a solution of (2) is a
solution of (1).

40. The difference of two solutions of (1) is a solution of (2).
41. If y, is a solution of (1), what can you say about ¢y,?

42. If y; and y, are solutions of y; + py; = r; and
] X . .
Y2 + pya = ry, respectively (with the same p!), what
can you say about the sum y; + y,?

43. CAS EXPERIMENT. (a) Solve the ODE

vy — y/x = —x~! cos (1/x). Find an initial condition
for which the arbitrary constant is zero. Graph the
resulting particular solution, experimenting to obtain
a good figure near x = 0.

(b) Generalizing (a) from n = 1 to arbitrary n, solve
the ODE y' — my/x = —x"~2 cos (1/x). Find an initial
condition as in (a), and experiment with the graph.
TEAM PROJECT. Riccati Equation, Clairaut
Equation. A Riccati equation is of the form

44

(11) v+ plx)y = g(x)y? + hlx).
A Clairaut equation is of the form

(12) y = .\'_\‘r + g(_\‘f}.

(a) Apply the transformation y = ¥ + 1l/u to the

Riccati equation (11), where Y is a solution of (11), and

obtain for u the linear ODE v’ + (2¥g — pju = —g.

Explain the effect of the transformation by writing it

asy=Y+uv,v=1lu

(b) Show that y = Y = x is a solution of

o= (2 + Dy = —x%? -t -+ ]

and solve this Riccati equation, showing the details.

(¢) Solvey + (3 — 2x%sinx)y

= —y®sinx + 2x + 3x% — x*sinx, using (and

verifying) that y = x? is a solution.

(d) By working “backward” from the u-equation find

further Riccati equations that have relatively simple

solutions.

(e) Solve the Clairaut equation y = xy’ + 1/y’. Hint.

Differentiate this ODE with respect to x.

(f) Solve the Clairaut equation y'2 — xy" + y = 0

in Prob. 16 of Problem Set 1.1.

(g) Show that the Clairaut equation (12) has as

solutions a family of straight lines y = ¢x + g(c) and

a singular solution determined by g'(s) = —x, where

s =y, that forms the envelope of that family.
45. (Variation of parameter) Another method of
obtaining (4) results from the following idea. Write
(3) as ¢y*, where v* is the exponential function,
which is a solution of the homogeneous linear ODE
v + py* = 0. Replace the arbitrary constant ¢ in (3)
with a function « to be determined so that the resulting
function y = wy* is a solution of the nonhomogeneous
linear ODE y" + py = r.
TEAM PROJECT. Transformations of ODEs. We
have transformed ODEs to separable form, to exact
form, and to linear form. The purpose of such
transformations is an extension of solution methods to
larger classes of ODEs. Describe the key idea of each
of these transformations and give three typical
examples of your choice for each transformation,
showing each step (not just the transformed ODE).

8



SEC.1.7 Existence and Uniqueness of Solutions

EXAMPLE 2 Nonuniqueness

The initial value problem

has the two solutions

_‘»EO

y =V,

and

41

y0)y =0

2140 x=0

pE
—x214if

x<0

although f(x, y) = '\/E is continuous for all y. The Lipschitz condition (4) is violated in any region that includes
the line y = 0, because for y; = 0 and positive vy we have

(5)

= ) Vg 1
[fx, yo) — flx, yy)| _ vy (\/y_g}O]

lva — »y

Y2

and this can be made as large as we please by choosing ys sufficiently small, whereas (4) requires that the
quotient on the left side of (5) should not exceed a fixed constant M.

1.

-

th

;

(Vertical strip) If the assumptions of Theorems 1 and 2
are satisfied not merely in a rectangle but in a vertical
infinite strip [x — xo| < @, in what interval will the
solution of (1) exist?

(Existence?) Does the initial value problem
(x — 1)y" = 2y, »(1) = 1 have a solution? Does your
result contradict our present theorems?

(Common points) Can two solution curves of the same
ODE have a common point in a rectangle in which the
assumptions of the present theorems are satisfied?
(Change of initial condition) What happens in Prob. 2
it you replace y(1) = 1 with y(1) = k?

(Linear ODE) If p and r in _1," + plx)y = r(x) are
continuous for all x in an interval [x — xo| =< a. show
that f(x, ¥) in this ODE satisfies the conditions of our
present theorems, so that a corresponding initial value
problem has a unique solution. Do you actually need
these theorems for this ODE?

(Three possible cases) Find all initial conditions such
that (x2 — 4x)y’ = (2x — 4)y has no solution, precisely
one solution, and more than one solution.

(Length of x-interval) In most cases the solution of an
initial value problem (1) exists in an x-interval larger
than that guaranteed by the present theorems. Show this
fact for y' = 2y2, y(1) = 1 by finding the best possible
« (choosing b optimally) and comparing the result with
the actual solution.

8.

10.

PROJECT. Lipschitz Condition. (A) State the
definition of a Lipschitz condition. Explain its relation
to the existence of a partial derivative. Explain its
significance in our present context. Illustrate your
statements by examples of your own.

(B) Show that for a linear ODE y' + p(x)y = r(x) with
continuous p and r in [x — x| = a a Lipschitz condition
holds. This is remarkable because it means that for a
linear ODE the continuity of f(x, v) guarantees not only
the existence but also the uniqueness of the solution of
an initial value problem. (Of course, this also follows
directly from (4) in Sec. 1.5.)

(C) Discuss the uniqueness of solution for a few simple
ODEs that you can solve by one of the methods
considered, and find whether a Lipschitz condition is
satisfied.

. (Maximum «) What is the largest possible « in

Example 1 in the text?

CAS PROJECT. Picard Iteration. (A) Show that by
integrating the ODE in (1) and observing the initial
condition you obtain

(6) ¥x) = yo + f f(t, (1)) .
xn

"RUDOLF LIPSCHITZ (1832-1903), German mathematician. Lipschitz and similar conditions are important
in modern theories, for instance, in partial differential equations.
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This form (6) of (1) suggests Picard’s iteration
method?®, which is defined by

(7)) yu(x) = vy + f flt. vy () dt, n=12---.
Ty

It gives approximations yy, Vo, Vg, - - - of the unknown
solution y of (1). Indeed, you obtain y, by substituting
¥ = ¥g on the right and integrating—this is the first
step—. then yy by substituting y = y; on the right and
integrating—this is the second step—. and so on. Write
a program of the iteration that gives a printout of the
first approximations vg, ¥y.---. vy as well as their
graphs on common axes. Try your program on two
initial value problems of your own choice.

1. Explain the terms ordinary differential equation (ODE),
partial differential equation (PDE), order, general
solution. and particular solution. Give examples. Why
are these concepts of importance?

2. What is an initial condition? How is this condition used
in an initial value problem?

3. What is a homogeneous linear ODE? A nonhomogeneous
linear ODE? Why are these equations simpler than
nonlinear ODEs?

4. What do you know about direction fields and their

practical importance?

Give examples of mechanical problems that lead to ODEs.

6. Why do electric circuits lead to ODEs?

7. Make a list of the solution methods considered. Explain
each method with a few short sentences and illustrate
it by a typical example.

8. Can certain ODEs be solved by more than one method?
Give three examples.

n
b

9. What are integrating factors? Explain the idea. Give
examples.
Does every first-order ODE have a solution? A general
solution? What do you know about uniqueness of
solutions?

10

i1-14| DIRECTION FIELDS

Graph a direction field (by a CAS or by hand) and sketch
some of the solution curves. Solve the ODE exactly and
compare.

11 y' =1 + 4y? 12, y' =3y — 2x

s CHAPTER T REVIEW - QUESTIONS AND PROBLEMS

(B) Apply the iteration to y' = x + v, ¥(0) = 0. Also
solve the problem exactly.

(C) Apply the iteration to y' = 2y% y(0) = 1. Also
solve the problem exactly.

(D) Find all solutions of ' = 2Vy, v(1) = 0. Which
of them does Picard’s iteration approximate?

(E) Experiment with the conjecture that Picard's
iteration converges to the solution of the problem for
any initial choice of y in the integrand in (7) (leaving
vp outside the integral as it is). Begin with a simple
ODE and see what happens. When you are reasonably
sure, take a slightly more complicated ODE and give

it a try.

13. y' =4y — y? 14. y' = 16xly

{15-26| GENERAL SOLUTION

Find the general solution. Indicate which method in this
chapter you are using. Show the details of your work.

15. y' = x2(1 + ¥

16. v/ = x(y — 22+ 1)

17. yv' + 0?2 = x

18. — 7 sin mx cosh 3y dx + 3 cos wmy sinh 3y dy = 0
19. y' + ysinx = sinx 20. y —y=1l/y
21. 3sin 2y dx + 2xcos 2y dy = 0

22, xy' = xtan (y/x) + y

23. (ycosxy — 2x)dx + (xcosxy + 2y)dy = 0
24, xy' =(y—2x)?+y (Sety — 2x =z

25, sin(v — x)dx + [cos (y — x) —sin(y —x)]dy =0
26. xy' = (y/ix)® + y

[27-32| INITIAL VALUE PROBLEMS

Solve the following initial value problems. Indicate the
method used. Show the details of your work.

27 v +x=0, y3) =4
28, y' — 3y = —12y% y0) =2
29. y’ =1+ _\‘2, _'.-'(1317} =0

30. y' + wy = 2bcos mx, y(0) =0

31 (2xy2 —sinx) dx + (2 + 2x%y) dy = 0, y(0) = |

32, [2y + y¥x 4+ €"(1 + 1/x)]) dx + (x + 2y) dy = 0,
vyl =1

SEMILE PICARD (1856-1941), French mathematician, also known for his important contributions to complex
analysis (see Sec. 16.2 for his famous theorem). Picard used his method to prove Theorems | and 2 as well as
the convergence of the sequence (7) to the solution of (1), In precomputer times the iteration was of little practical

vilue because of the integrations.



