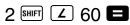

Problems Involving Complex Numbers, with an Emphasis on Polar Form

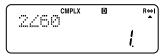
(fx-100MS/fx-115MS/fx-570MS/fx-991MS only)

Rotate $\sqrt{3} - 2i$ 60 degrees around the origin of the complex plane, and then determine the point with a ratio of 2 with the origin as the center.

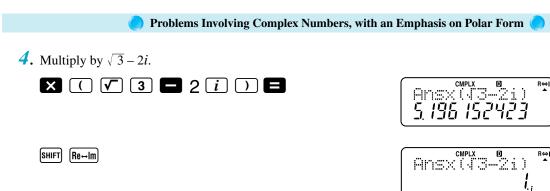
Explanation Defining *r* as the distance of point (a, b) from the origin on the complex plane and θ as the angle formed with the positive part of the *x*-axis makes it possible to express complex number z = a + bi as $z = r (\cos \theta + i \sin \theta)$. This is called polar representation of complex number *z*. Using polar representation for z_2 in the complex number multiplication $z_1 \times z_2$ gives us $z_2 = r_2 (\cos \theta_2 + i \sin \theta_2)$. Now we can rotate $z_1 \theta_2^{\circ}$ around the origin of the complex plane, giving us a value with a ratio of r_2 with the origin as the center.

Operation 1


1. Select the CMPLX Mode.



2. Specify the angle unit .


3. Input the polar form of the complex number, with r = 2, and $\theta = 60$. The values you input are automatically converted to rectangular form on the display, but you can also display them in polar form.

The above obtains the complex number 5.196152423 + i.