
Network Programming

Dr. Thaier Hayajneh
Computer Engineering Department

UDP Sockets

1

Simple Daytime Client 1

•Specify Server IP Address and Port

•Fill an Internet socket address structure with server’s IP address
and portand port

•Set entire structure to zero first using bzero

•Set address family to AF INET•Set address family to AF_INET

•Set port number to 13 (well-known port for daytime server on host
supporting this service)

•Set IP address to value specified as command line argument
(argv[1])

•IP address and port number must be in specific format•IP address and port number must be in specific format

•htons host to network short

•inet pton presentation to numeric converts ASCII dotted-

2

inet_pton presentation to numeric, converts ASCII dotted
decimal command line argument (128.82.4.66) to proper format

Simple Daytime Client 2
•Establish connection with server

•Connect (sockfd, (SA *) &servaddr, sizeof(servaddr))

•Establish a TCP connection with server specified by socket
address structure pointed to by second argument

•Specify length of socket address structure as third argument•Specify length of socket address structure as third argument

•SA is #defined to be struct sockaddr in unp.h
•Read and Display server replyp y p y

Server reply normally a 26-byte string of the form

Mon May 26 20:58:40 2003\r\n

TCP a byte-stream protocol, always code the read in a loop and
terminate loop when read returns 0 (other end closed connection)
or value less than 0 (error)

3

()

Simple Daytime Client 3
•Terminate program

Exit terminates the program exit (0)

Unix closes all open descriptors when a process terminates

TCP socket closed
•Program protocol dependent on IPv4, will see later how to change to IPv6 and
even make it protocol independent

4

Error Handling: Wrapper Functions
•Check every function call for error return

•In previous example, check for errors from socket, inet_pton, connect, read, and
fputsfputs

•When error occurs, call textbook functions err_quit and err_sys to print an error
message and terminate the program

•Define wrapper functions in wrapsock.c

•Unix errno value

When an error occurs in a Unix function global variable errno isWhen an error occurs in a Unix function, global variable errno is
set to a positive value indicating the type of error and the function
normally returns -1

f ti l k t d i t dierr_sys function looks at errno and prints corresponding error
message (e.g., connection timed out)

5

Simple Daytime Server 1/2

C t TCP S k t•Create a TCP Socket

Identical to client code
•Bind server well-known port to socketBind server well known port to socket

Fill an Internet socket address structure
Call Bind (wrapper function) local protocol address bound to

socketsocket
Specify IP address as INADDR_ANY: accept client connection on

any interface (if server has multiple interfaces)
•Convert socket to listening socket

Socket becomes a listening socket on which incoming
connections from clients will be accepted by the kernelp y

LISTENQ (defined in unp.h) specifies the maximum number of
client connections the kernel will queue for this listening descriptor

6

Simple Daytime Server 2/2

•Accept client connection, send reply

Server is put to sleep (blocks) in the call to accept

After connection accepted, the call returns and the return value
is a new descriptor called the connected descriptor

New descriptor used for communication with the new clientp
•Terminate connection

Initiate a TCP connection termination sequence
Some Comments

Server handles one client at a time

If multiple client connections arrive at about the same time,
kernel queues them up, up to some limit, and returns them to
accept one at a time (An example of an iterative server, other

ti ?)

7

options?)

CONNECTIONLESS
ITERATIVEITERATIVE

SERVER

Connectionless Iterative UDPConnectionless Iterative UDP
The server serves one request at a timeq
A server gets the request
received in a datagram from UDP, g ,
processes the request, and gives
the response to UDP to send to p
the client.
The server pays no attention toThe server pays no attention to
the other datagrams

Connectionless Iterative UDP(2)Connectionless Iterative UDP(2)
The datagrams could be form one
client or from many clients are
stored in a queue waiting for service
They are processed one by one in
order of arrival
Th i l t fThe server uses one single port for
this purpose, the well-known port
All datagrams arriving at this portAll datagrams arriving at this port
waits in line to be served.

Socket interface
for connectionless

it tiiterative server Server functionsServer functions
Opening a socket

The server issues the socket call to ask the OS to create a
socket
The socket call creates a new socket structure
The application program makes this call and passes three
pieces of information:

Family
Type
Protocol

The OS creates a socket and enters the received information.
The OS returns an integer to define the socket uniquely
(socket descriptor) which is used to refer to the socket in the
following calls.

Server functions (2)Server functions (2)
Binding

The server issues the bind call to ask the OS to enter
information in the socket structure created in the previous
step (local socket address)

Steps to be repeated
Receiving: The server issues the recvfrom call to tread from
the incoming queue a datagram sent by a clientg q g y
Sending: after processing the datagram the server issues the
sendto call to send datagram that contains the result to the
outgoing queueg g q
The sendto call provides the remote socket address (client IP
address and the client port number) for each datagram to be
sent to the client (obtained by the recvfrom system call)(y y)

Client functionsClient functions
Opening a socket

The client issues the socket call to ask the OS to create a socketThe client issues the socket call to ask the OS to create a socket
The client does not have to do binding because the local socket
address can be provided by the OS.
The OS enters the local IP address and the ephemeral port number inThe OS enters the local IP address and the ephemeral port number in
the local socket address field of the created socket

Steps to be repeated
Sending: after receiving the socket descriptor from the operatingSending: after receiving the socket descriptor from the operating
system the client issues the sendto calls to send its request to the
server
Receiving: The client issues the recvfrom call to obtain the response g p
of its request from the OS

Closing:
when the client has no more requests it issues a close call to destroy the
socket

UDP CLIENT-SERVER
PROGRAMS

Simple echo client and serverSimple echo client and server
stdin

fgets
writen readline

TCP
client

TCP
serverstdout

fputs

writen

readline

readline

writen

1. The Client reads a line of text from its
standard input and writes the line to thestandard input and writes the line to the
server.

2 The server reads the line from its network2. The server reads the line from its network
input and echoes the line back to the client.

3. The client reads the echoed line and prints it3. The client reads the echoed line and prints it
on its standard output.

UDP Server

socket()

bind()

recvfrom()

UDP Client

socket() recvfrom()

block until datagram
received from a client

data(request)sendto()

socket()

Process request

sendto()

close()

data(reply)recvfrom()

close()

Socket functions for UDP client-server

recvfrom and sendto Functionsrecvfrom and sendto Functions
#include<sys/socket h>#include<sys/socket.h>

ssize_t recvfrom(int sockfd, void *buff, size_t nbyte, int flag,
struct sockaddr *from, socklen_t *addrlen);

ssize_t sendto(int sockfd, const void *buff, size_t nbyte, int flag,_ (_ y g
const struct sockaddr *to, socklen_t addrlen);

Both return: number of bytes read or written if OK -1 on errorBoth return: number of bytes read or written if OK,-1 on error

UDP simple echo client-serverUDP simple echo client-server

fgets
sendto

UDP

client

recvfrom

UDP

server

gets

stdin

stdout

recvfrom sendtofputs
stdout

Simple echo client-server using UDPSimple echo client-server using UDP

UDP echo server Function
#include “unp.h”
int main(int argc, char **argv)
{

int sockfd, n;
struck sockaddr_in servaddr, cliaddr;
socklen_t len;
h [MAXLINE]char mesg[MAXLINE];
sockfd=Socket(AF_INET,SOCK_DGRAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr sin fammily=AF INET;servaddr.sin_fammily=AF_INET;
servaddr.sin_addr.s_addr=htonl(INADDR_ANY);
servaddr.sin_port=htons(SERV_PORT);
bind(sockfd (SA *) &servaddr sizeof(servaddr));bind(sockfd, (SA) &servaddr,sizeof(servaddr));

for(; ;) {
len=sizeof(cliaddr);
n=Recvfrom(sockfd, mseg, MAXLINE, 0, cliaddr, &len);(, g, , , ,);
sendto(sockfd, mesg, n, 0, pcliaddr, len);

}
}

client clientserver

Socket receive
buffer

UDP
UDP UDP UDP

datagram datagram

Summary of UDP client-server with two clients.

UDP echo client Function
#include “unp.h”
int main(int argc, char **argv)
{

int sockfd, n;int sockfd, n;
struct sockaddr_in servaddr;
char sendline[MAXLINE], recvline[MAXLINE+1];

if (argc != 2)if (argc ! 2)
err_quit(“usage : udpcli <Ipaddress>”);
bzero(&servaddr, sizeof(servaddr);
servaddr.sin_family = AF_INET;
servaddr.sin port = htons(SERV PORT);se add s _po t to s(S _ O);
Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);
sockfd = Socket(AF_INET, SOCK_DGRAM, 0);
char sendline[MAXLINE], recvline[MAXLINE+1];

while(Fgets(sendline, MAXLINE, fp) != NULL) {(g (, , p)) {
sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, sizeof(servaddr);
n = Recvfrom(sockfd, recvline, MAXLINE, 0, NULL, NULL);
recvline[n] = 0; /* null terminate */
Fputs(recvline,stdout);p (,);

}
exit(0);

}

Course Project Phase(1)Course Project Phase(1)
Write a simple file storage UDP client-server
program
The client will send a request to the server
asking for a file: g

If the file is available then the server
will inform the client and display a list
f ll il bl filof all available files.

If the file is not available then the
client will send the file to the server.client will send the file to the server.
The server will store all the files in a
common directory and display all available
files to the client upon request

Due date: Thursday October 20, 2011

