Network Programming		<u>Introduction</u>	
	Dr. Thaier Hayajneh Computer Engineering Department Introduction	Our goal: □ get "feel" and terminology □ more depth, details are your responsibility □ approach:	 Overview: what's the Internet? what's a protocol? network edge; hosts, access net, physical media network core: packet/circuit switching, Internet structure performance: loss, delay, throughput protocol layers, service models history
Introduction	© Dr. Thaier Hayajneh, Fall 2011 1		Introduction 1-2

Introduction 1/2

•What is a network? Set of nodes connected by communication links

≻Components

 \checkmark (Network edge) Computing devices (end hosts, PDAs, ...) connected to the network

 \checkmark (Network core) Routers/switches that move data through the network

 \checkmark (Media) Physical links that carry information (fiber, copper, radio, and satellite)

Introduction

 \checkmark Applications that communicate with each other to provide services (Email, file transfer, and Web browsing).

•What is an internetwork? A network of networks (an internet)

•Specific example is the *Internet*

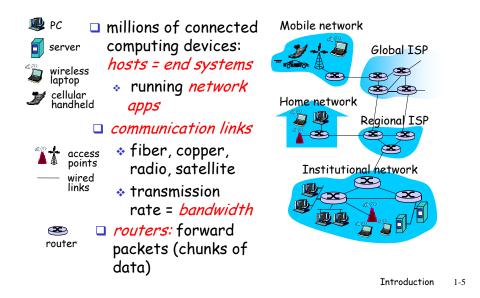
Introduction 2/2

•Network physical topology

≻Geometric representation of the relationship of all the links and nodes to one another

Categories: *mesh*, *star*, *bus*, and *ring*

•Network Categories


- •Local-Area Network (LAN)
- •Metropolitan-Area Network (MAN)
- •Wide-Area Network (WAN)
- •Personal-Area Network (PAN)

3

Introduction

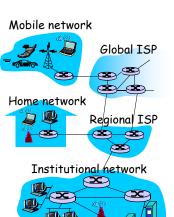
4

What's the Internet: "nuts and bolts" view

"Cool" internet appliances

World's smallest web server http://www-ccs.cs.umass.edu/~shri/iPic.html

Web-enabled toaster + weather forecaster



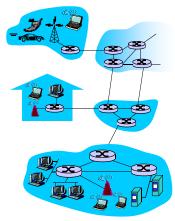
Internet phones

Introduction 1-6

What's the Internet: "nuts and bolts" view

- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, Ethernet
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view


 \Box communication

infrastructure enables distributed applications:

 Web, VoIP, email, games, e-commerce, file sharing

communication services provided to apps:

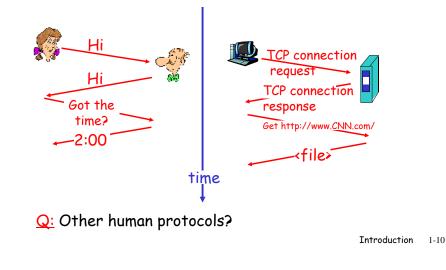
- reliable data delivery from source to destination
- "best effort" (unreliable) data delivery

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:


- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

Introduction 1-9

What's a protocol?

a human protocol and a computer network protocol:

Network Protocols

•Applications to communicate across a computer network

>Invent a *protocol* (an agreement how will communicate)

➤Which application is expected to initiate communicate and when responses are expected

✓Syntax: format of data

 \checkmark Semantics: meaning of each section of bits (How it is interpreted and what action (s) to be taken)

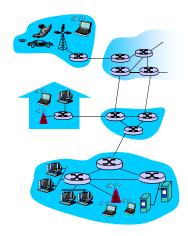
✓ Timing: when data should be sent and how fast?

•Example: Web Server and Web client

•Other examples? Other modes of communication?

Introduction

11


A closer look at network structure:

network edge:

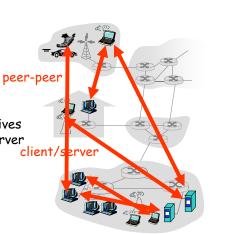
applications and hosts access networks, physical media: wired, wireless communication links

network core:

- interconnected routers
- network of networks

The network edge:

end systems (hosts):


- run application programs
- e.g. Web, email
- at "edge of network"

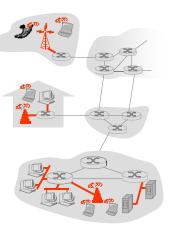
client/server model

- client host requests, receives service from always-on server
- e.g. Web browser/server; email client/server

□ peer-peer model:

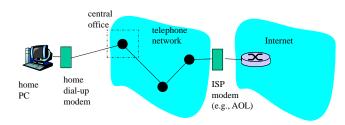
- minimal (or no) use of dedicated servers
- e.g. Skype, BitTorrent

Introduction 1-13

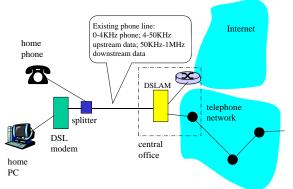

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks


Keep in mind:

- bandwidth (bits per second) of access network?
- □ shared or dedicated?


Introduction 1-14

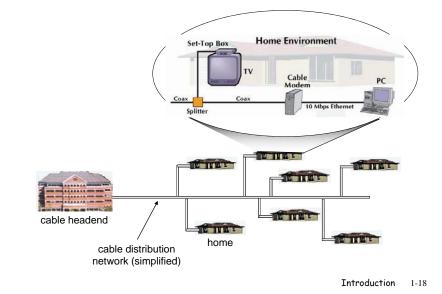
Dial-up Modem

- Uses existing telephony infrastructure
 - * Home is connected to central office
- up to 56Kbps direct access to router (often less)
- Can't surf and phone at same time: not "always on"

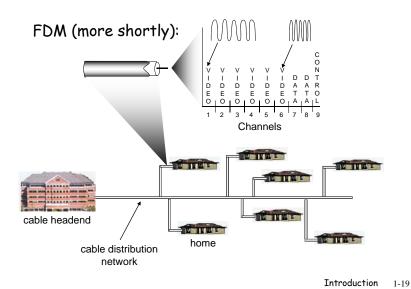
Digital Subscriber Line (DSL)

- * Also uses existing telephone infrastruture
- up to 1 Mbps upstream (today typically < 256 kbps)</p>
- up to 8 Mbps downstream (today typically < 1 Mbps)
- * dedicated physical line to telephone central office

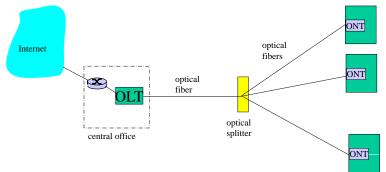
Residential access: cable modems


- Does not use telephone infrastructure
 - Instead uses cable TV infrastructure

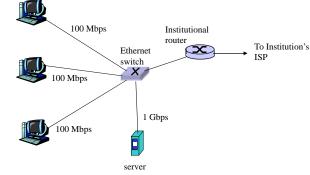
□ HFC: hybrid fiber coax


- asymmetric: up to 30Mbps downstream, 2
 Mbps upstream
- network of cable and fiber attaches homes to ISP router
 - homes share access to router
 - unlike DSL, which has dedicated access

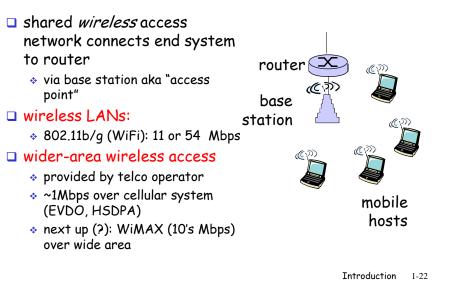
Introduction 1-17


Cable Network Architecture: Overview

Cable Network Architecture: Overview

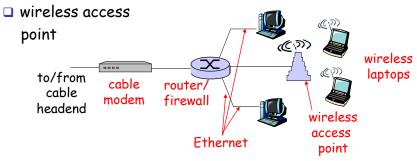


Fiber to the Home


- Optical links from central office to the home
- Two competing optical technologies:
 - Passive Optical network (PON)
 - Active Optical Network (PAN)
- Much higher Internet rates; fiber also carries television and phone services

Ethernet Internet access

- Typically used in companies, universities, etc
- □ 10 Mbs, 100Mbps, 1Gbps, 10Gbps Ethernet
- Today, end systems typically connect into Ethernet switch


Wireless access networks

Home networks

Typical home network components:

- DSL or cable modem
- router/firewall/NAT
- Ethernet

Physical Media

- Bit: propagates between transmitter/rcvr pairs
- physical link: what lies between transmitter & receiver
- **u** guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted Pair (TP)

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps Ethernet
 - Category 5: 100Mbps Ethernet

Physical Media: coax, fiber

Coaxial cable:

- two concentric copper conductors
- bidirectional
- baseband:
 - * single channel on cable
 - legacy Ethernet
- broadband:
 - multiple channels on cable
 - HFC

Fiber optic cable:

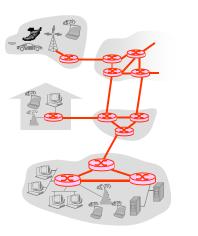
- glass fiber carrying light pulses, each pulse a bit
- □ high-speed operation:
 - high-speed point-to-point transmission (e.g., 10's-100's Gps)
- low error rate: repeaters spaced far apart ; immune to electromagnetic noise

Introduction 1-25

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

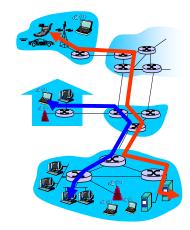
- Radio link types: terrestrial microwave
 - * e.g. up to 45 Mbps channels
- LAN (e.g., Wifi)
 - 11Mbps, 54 Mbps
- □ wide-area (e.g., cellular)
 - 3G cellular: ~ 1 Mbps


🗆 satellite

- Kbps to 45Mbps channel (or multiple smaller channels)
- * 270 msec end-end delay
- geosynchronous versus low altitude

Introduction 1-26

The Network Core

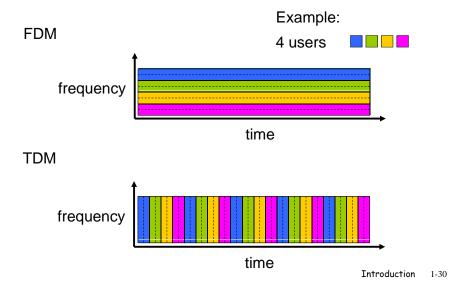

- mesh of interconnected routers
- Independent is data transferred through net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"

Network Core: Circuit Switching

End-end resources reserved for "call"

- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required

Network Core: Circuit Switching



- resource piece *idle* if not used by owning call (no sharing)
- dividing link bandwidth into "pieces"
 - frequency division

Introduction 1-29

 \bullet time division

Circuit Switching: FDM and TDM

Data Transfer Through the Network

•Packet-Switching Data sent through network in discrete chunks

- Each end-to-end data stream divided into *packets*
 - ✓Users' packets *share* network resources
 - \checkmark Each packet uses full link bandwidth

➢Resource contention

- \checkmark aggregate resource demand can exceed amount available
- ✓ Congestion \rightarrow packets queue, wait for link use
- \checkmark store and forward \rightarrow packets move one hop at a time
 - □transmit over link
 - □wait turn at next link

Network Core: Packet Switching

each end-end data stream divided into *packets*

- user A, B packets share network resources
- each packet uses full link bandwidth
- □ resources used *as needed*

Bandwidth division into "pieces" Dedicated allocation Resource reservation

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - Node receives complete packet before forwarding

Data Transfer Through the Network

•Packet-Switching approaches

≻datagram network

- ✓ *destination address* determines next hop
- \checkmark routes may change during session
- ✓ analogy: driving, asking directions

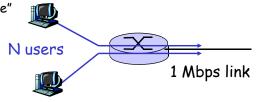
➤virtual circuit network

- ✓Requires call setup
- \checkmark each packet carries tag (virtual circuit ID), tag determines next hop
- ✓ *fixed path* determined at *call setup time*, remains fixed thru call
- ✓ routers maintain per-call state

Introduction 33

Packet switching versus circuit switching

Packet switching allows more users to use network!


- □ 1 Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time

circuit-switching:

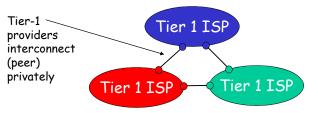
10 users

packet switching:

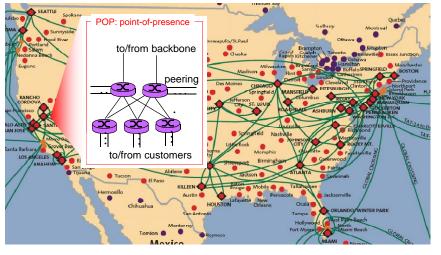
 with 35 users, probability > 10 active at same time is less than .0004

Q: how did we get value 0.0004?

Introduction 1-34


Packet switching versus circuit switching

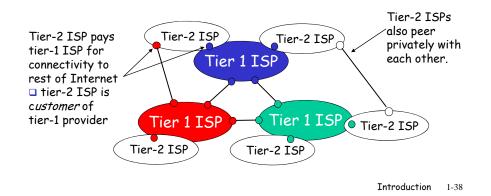
Is packet switching a "slam dunk winner?"


- great for bursty data
 - resource sharing
 - simpler, no call setup
- excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - * bandwidth guarantees needed for audio/video apps
 - still an unsolved problem

Internet structure: network of networks

- roughly hierarchical
- at center: "tier-1" ISPs (e.g., Verizon, Sprint, AT&T, Cable and Wireless), national/international coverage
 - * treat each other as equals

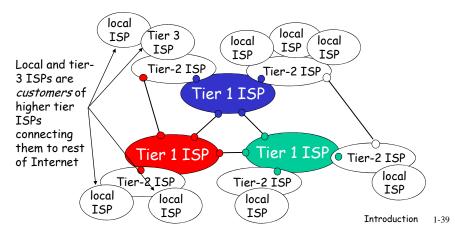
<u>Tier-1 ISP: e.g., Sprint</u>



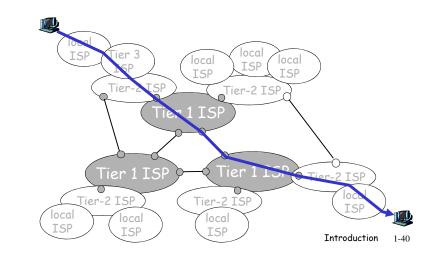
Introduction 1-37

Internet structure: network of networks

□ "Tier-2" ISPs: smaller (often regional) ISPs

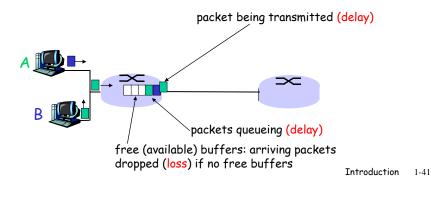

* Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

Internet structure: network of networks


"Tier-3" ISPs and local ISPs

last hop ("access") network (closest to end systems)

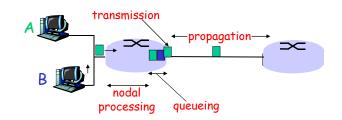
Internet structure: network of networks


a packet passes through many networks!

How do loss and delay occur?

packets queue in router buffers

- packet arrival rate to link exceeds output link capacity
- packets queue, wait for turn

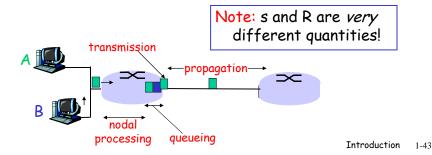

Four sources of packet delay

1. nodal processing: check bit errors

determine output link

□ 2. queueing

- time waiting at output link for transmission
- depends on congestion level of router

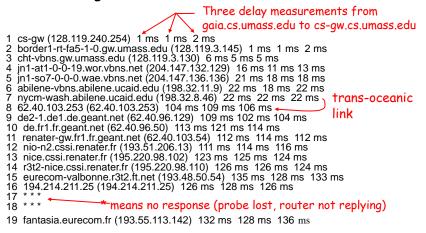

Introduction 1-42

Delay in packet-switched networks

- 3. Transmission delay:
- R=link bandwidth (bps)
- L=packet length (bits)
- time to send bits into link = L/R

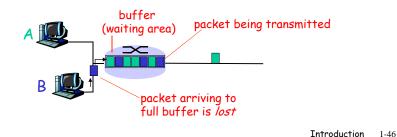
4. Propagation delay:

- d = length of physical link
- □ s = propagation speed in
- medium (~2×10⁸ m/sec)
- propagation delay = d/s

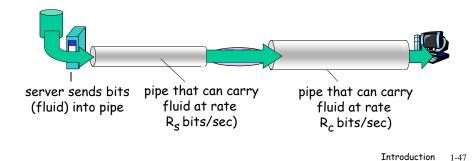

"Real" Internet delays and routes

- □ What do "real" Internet delay & loss look like?
- <u>Traceroute program</u>: provides delay measurement from source to router along end-end Internet path towards destination. For all *i*:
 - sends three packets that will reach router i on path towards destination
 - router i will return packets to sender
 - * sender times interval between transmission and reply.

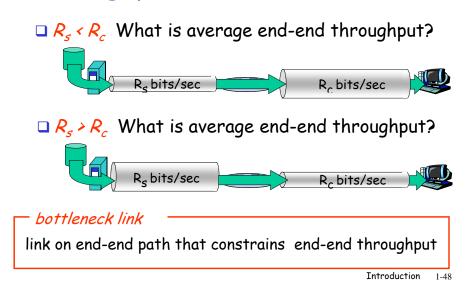
"Real" Internet delays and routes


traceroute: gaia.cs.umass.edu to www.eurecom.fr

Introduction 1-45

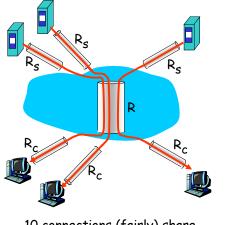

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- Iost packet may be retransmitted by previous node, by source end system, or not at all



Throughput

- throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - * instantaneous: rate at given point in time
 - * average: rate over longer period of time



Throughput (more)

<u>Throughput: Internet scenario</u>

 per-connection end-end throughput: min(R_c,R_s,R/10)
 in practice: R_c or R_s is often bottleneck

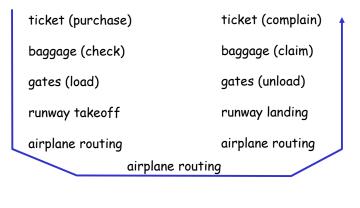
10 connections (fairly) share backbone bottleneck link R bits/sec

Protocol "Layers"

Networks are complex!

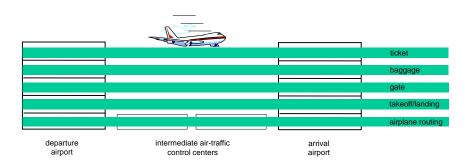
□ many "pieces":

- hosts
- routers
- links of various media
- * applications
- * protocols
- hardware, software


Question:

Is there any hope of organizing structure of network?

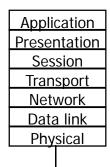
Or at least our discussion of networks?


Introduction 1-50

Organization of air travel

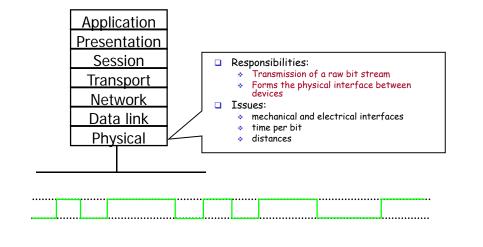
• a series of steps

Layering of airline functionality

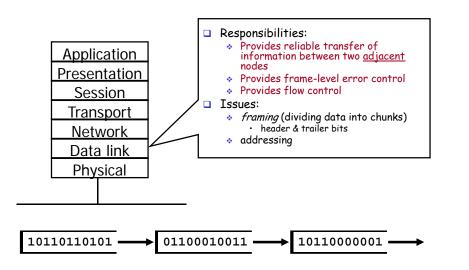


Layers: each layer implements a service

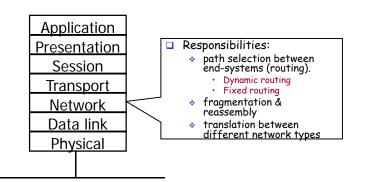
via its own internal-layer actions

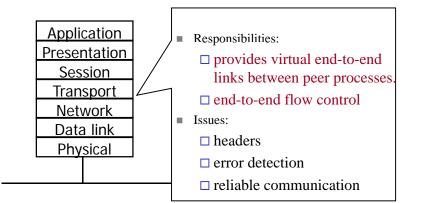

 $\boldsymbol{\ast}$ relying on services provided by layer below

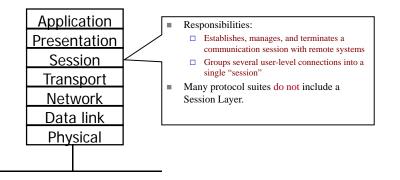
<u>Protocol Stack: ISO OSI</u> <u>Model</u>

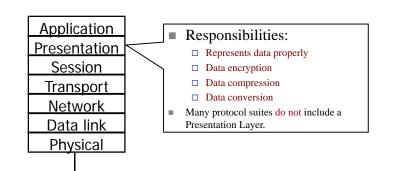


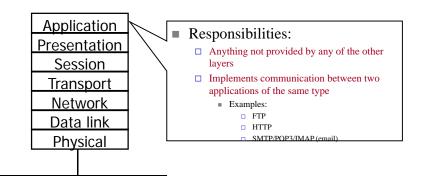
ISO: the International Standards Organization OSI: <u>Open Systems Interconnection Reference Model (1984)</u>


Layer 1: Physical Layer

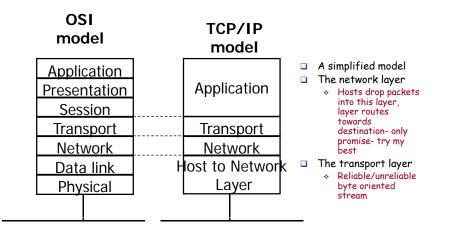

Layer 2: Data Link Layer

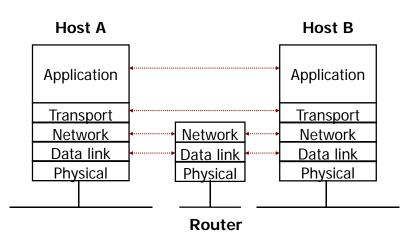

Layer 3: Network Layer


Layer 4: Transport Layer

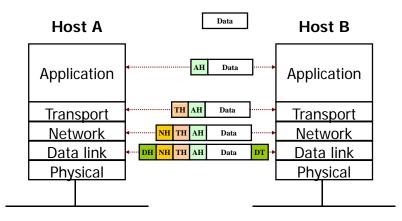

Layer 5: Session Layer

Layer 6: Presentation Layer


Layer 7: Application Layer


Problems

- Seven layers not widely accepted
- Standardized before implemented
- □ Top three layers fuzzy
- □ Internet or TCP/IP layering widespread


TCP/IP Layering Architecture

Hybrid Reference Model

<u>Header encapsulation and</u> <u>stripping</u>

Layering & Headers

- Each layer needs to add some control information to the data in order to do it's job.
- This information is typically pre-appended to the data before being given to the lower layer.
- Once the lower layers deliver the data and control information - the peer layer uses the control information.

What are the headers?

Physical:

no header - just a bunch of bits.

<u>Data Link:</u>

- * address of the receiving endpoints
- * address of the sending endpoint
- * length of the data
- checksum.

<u>Network layer header -</u> <u>examples</u>

- protocol suite version
 type of service
 length of the data
 packet identifier
 fragment number
 time to live
- protocol
- header checksum
- source network address
- destination network address

Important Summary

- Data-Link:
 - communication between machines on the same network.
- Network:
 - communication between machines on possibly different networks.
- □ Transport:
 - communication between processes (running on machines on possibly different networks).

<u>Addresses</u>

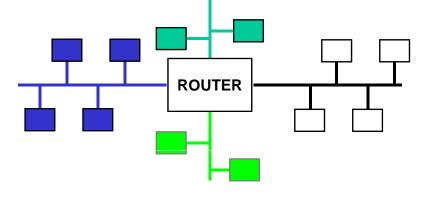
- Each communication endpoint must have an address.
- Consider 2 processes communicating over an internet:
 - the network must be specified
 - * the host (end-system) must be specified
 - * the process must be specified.

Addresses at Layers

- Physical Layer
 - no address necessary
- Data Link Layer
 - $\ast\,$ address must be able to select any host on the network.
- Network Layer
 - $\ast\,$ address must be able to provide information to enable routing.
- Transport Layer
 - $\boldsymbol{\ast}$ address must identify the destination process.

<u>Repeater</u>

- Copies bits from one network to another
- Does not look at any bits
- Allows the extension of a network beyond physical length limitations


<u>Bridge</u>

- Copies frames from one network to another
- Can operate selectively does not copy all frames (must look at data-link headers).
- Extends the network beyond physical length limitations.

Router

- Copies packets from one network to another.
- Makes decisions about what route a packet should take (looks at network headers).

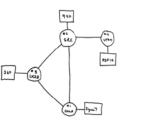
Gateway

- Operates as a router
- Data conversions above the network layer.
- Conversions:
 - encapsulation use an intermediate network translation - connect different application protocols
 - encryption could be done by a gateway

Which layer?

- 🗅 Repeater & Hub
 - physical layer
- Bridge & Switch
 - data link layer
- Router
 - network layer
- 🗆 Gateway
 - network layer and above.

Hardware vs. Software


- □ Repeaters are typically hardware devices.
- Bridges can be implemented in hardware or software.
- Routers & Gateways are typically implemented in software so that they can be extended to handle new protocols.
- Many workstations can operate as routers or gateways.

Internet History

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- 1964: Baran packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- □ 1972:
 - ARPAnet public demonstration
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

THE ARPA NETWORK Intr

Introduction 1-77

Internet History

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- 1976: Ethernet at Xerox PARC
- ate70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- □ 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

Introduction 1-78

Internet History

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IPaddress translation
- 1985: ftp protocol defined
- 1988: TCP congestion control

- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

Internet History

1990, 2000's: commercialization, the Web, new apps

- Early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- □ early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 🔹 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

Late 1990's - 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

Internet History

2007:

- ~500 million hosts
- Voice, Video over IP
- P2P applications: BitTorrent (file sharing) Skype (VoIP), PPLive (video)
- more applications: YouTube, gaming
- wireless, mobility

Introduction 1-81