
Chapter 23Chapter 23

Process-to-Process Delivery:Process-to-Process Delivery:
UDP, TCP, and SCTP

23.1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2323--1 PROCESS1 PROCESS--TOTO--PROCESS DELIVERYPROCESS DELIVERY

TheThe transporttransport layerlayer isis responsibleresponsible forfor processprocess totoTheThe transporttransport layerlayer isis responsibleresponsible forfor processprocess--toto--
processprocess deliverydelivery——thethe deliverydelivery ofof aa packet,packet, partpart ofof aa
message,message, fromfrom oneone processprocess toto anotheranother.. TwoTwo processesprocessesg ,g , ff pp pp
communicatecommunicate inin aa client/serverclient/server relationship,relationship, asas wewe willwill
seesee laterlater..

Client/Server Paradigm
Topics discussed in this section:Topics discussed in this section:

g
Multiplexing and Demultiplexing
Connectionless Versus Connection-Oriented Service
Reliable Versus Unreliable

23.2

Reliable Versus Unreliable
Three Protocols

Transport services and protocols
 provide logical communication

between app processes running

application
transport
network
data link
physical

between app processes running
on different hosts

 transport protocols run in end
systemssystems
 send side: breaks app

messages into segments,
passes to network layerpasses to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

application
transport
network
data link
physical

passes to app layer
 more than one transport

protocol available to apps
Internet: TCP and UDP Internet: TCP and UDP

Transport vs. network layerp y

 network layer: logical Household analogy:y g
communication between
hosts
t t l l i l

12 kids sending letters to
12 kids

kid transport layer: logical
communication between
processes

 processes = kids
 app messages = letters

in envelopes
 relies on, enhances,

network layer services

in envelopes
 hosts = houses
 transport protocol =

Ann and Bill
 network-layer protocol

= postal service= postal service

Internet transport-layer protocols

 reliable, in-order delivery
(TCP)

application
transport
network
data link
physical(TCP)

 congestion control
 flow control

physical

network
data link
physical network

data link
physical

 connection setup

 unreliable, unordered
delivery: UDP

network
data link

network
data link
physical

delivery: UDP
 no-frills extension of “best-

effort” IP

l bl

network
data link
physical

network
data link
physical

physical

application
transport
network
data link

h i l

 services not available:
 delay guarantees
 bandwidth guarantees

physical

g

Th t t l i ibl f

Note

The transport layer is responsible for
process-to-process delivery.

23.6

Figure 23.1 Types of data deliveries

23.7

Figure 23.2 Port numbers 16 bits

23.8

Figure 23.3 IP addresses versus port numbers

23.9

Figure 23.4 IANA ranges

23.10

Figure 23.5 Socket address

23.11

Figure 23.6 Multiplexing and demultiplexing

23.12

Multiplexing/demultiplexingp g/ p g

delivering received segments

Demultiplexing at rcv host:
gathering data from multiple

Multiplexing at send host:

delivering received segments
to correct socket

sockets, enveloping data with
header (later used for
demultiplexing)

application P1 applicationapplication P2P3 P4P1

= process= socket

transport

network

transport

network

transport

network

link

physical

link

physical

link

physical

host 1 host 2 host 3

How demultiplexing works

 host receives IP datagrams
 each datagram has source 32 bits

IP address, destination IP
address

 each datagram carries 1

source port # dest port #

transport-layer segment
 each segment has source,

destination port number

other header fields

 host uses IP addresses & port
numbers to direct segment to
appropriate socket

application
data

(message)

TCP/UDP segment format

Figure 23.7 Error control

23.15

Figure 23.8 Position of UDP, TCP, and SCTP in TCP/IP suite

23.16

2323--2 USER DATAGRAM PROTOCOL (UDP)2 USER DATAGRAM PROTOCOL (UDP)

TheThe UserUser DatagramDatagram ProtocolProtocol (UDP)(UDP) isis calledcalled aaTheThe UserUser DatagramDatagram ProtocolProtocol (UDP)(UDP) isis calledcalled aa
connectionless,connectionless, unreliableunreliable transporttransport protocolprotocol.. ItIt doesdoes
notnot addadd anythinganything toto thethe servicesservices ofof IPIP exceptexcept toto provideprovidey gy g ff pp pp
processprocess--toto--processprocess communicationcommunication insteadinstead ofof hosthost--toto--
hosthost communicationcommunication..

Well-Known Ports for UDP
Topics discussed in this section:Topics discussed in this section:

User Datagram
Checksum
UDP Operation

23.17

UDP Operation
Use of UDP

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”
Internet transport protocol Wh i th UDP?Internet transport protocol

 “best effort” service, UDP
segments may be:

l t

Why is there a UDP?
 no connection establishment

(which can add delay)
 lost
 delivered out of order to

app

 simple: no connection state
at sender, receiver

 small segment header
 connectionless:

 no handshaking between
UDP sender, receiver

 no congestion control: UDP
can blast away as fast as
desired

 each UDP segment
handled independently of
others

UDP: more

 often used for streaming
multimedia apps 32 bitsmultimedia apps
 loss tolerant
 rate sensitive

source port # dest port #

length checksum
Length, in

bytes of UDP
segment

 other UDP uses
 DNS
 SNMP

segment,
including

header

 SNMP
 reliable transfer over UDP:

add reliability at application
layer

Application
data

(message)layer
 application-specific error

recovery!
UDP segment format

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Sender: Receiver:
 treat segment contents as

sequence of 16-bit integers
 checksum: addition (1’s

 compute checksum of received
segment

 check if computed checksum checksum: addition (1 s
complement sum) of
segment contents

 sender puts checksum

 check if computed checksum
equals checksum field value:
 NO - error detected
 YES - no error detected sender puts checksum

value into UDP checksum
field

 YES - no error detected.
But maybe errors
nonetheless? More later ….

Internet Checksum Example
 Note

 When adding numbers, a carryout from the g , y
most significant bit needs to be added to
the result

 Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

wraparound

sum
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

sum
checksum

Table 23.1 Well-known ports used with UDP

23.22

Figure 23.9 User datagram format

23.25

UDP l th

Note

UDP length
= IP length – IP header’s length

23.26

Figure 23.12 Queues in UDP

23.30

UDP is suitable for:

 A process that requires simple request-response A process that requires simple request response
communication with little concern for flow and
error control – FTP

 A process with internal flow and error control
mechanisms – TFTF

 Multicasting
 Management processes – SNMP
 Some rout updating protocols - RIP

23.31

2323--3 TCP3 TCP

TCPTCP isis aa connectionconnection--orientedoriented protocolprotocol;; itit createscreates aapp ;;
virtualvirtual connectionconnection betweenbetween twotwo TCPsTCPs toto sendsend datadata.. InIn
addition,addition, TCPTCP usesuses flowflow andand errorerror controlcontrol mechanismsmechanisms
atat thethe transporttransport levellevel..

Topics discussed in this section:Topics discussed in this section:
TCP Services
TCP Features

Topics discussed in this section:Topics discussed in this section:

Segment
A TCP Connection
Flow Control

23.32

Flow Control
Error Control

TCP: Overview RFCs: 793, 1122, 1323, 2018,
2581

 full duplex data: point-to-point: p
 bi-directional data flow in

same connection
 MSS: maximum segment

 one sender, one receiver

 reliable, in-order byte
steam: MSS: maximum segment

size

 connection-oriented:
handshaking (e hange of

steam:
 no “message boundaries”

 pipelined:
 handshaking (exchange of

control msgs) init’s
sender, receiver state
before data exchange

p p
 TCP congestion and flow

control set window size

 send & receive buffers before data exchange

 flow controlled:
 sender will not overwhelm

 send & receive buffers

socket
door

socket
d

application
writes data

application
reads data

receiver
door

TCP
send buffer

TCP
receive buffer

door

segment

TCP segment structure

source port # dest port #

32 bits

URG: urgent data
(generally not used) counting

by bytes
sequence number

acknowledgement number
R i i dhead not

ACK: ACK #
valid

by bytes
of data
(not segments!)

Receive window

Urg data pointerchecksum

FSRPAUlen used

Options (variable length)

PSH: push data now
(generally not used)

RST, SYN, FIN:

bytes
rcvr willing
to accept

application

Options (variable length)
connection estab
(setup, teardown

commands)

pp
data
(variable length)Internet

checksum
(as in UDP)

Table 23.2 Well-known ports used by TCP

23.35

Figure 23.13 Stream delivery

23.36

Figure 23.14 Sending and receiving buffers

23.37

Figure 23.15 TCP segments

23.38

TCP provides:p
 Full duplex communication

C ti i t d i Connection oriented service:

 The two TCPs establish a connection between them

 Data are exchanged in both directions

 The connection is terminated

 Reliable service

 Flow control Flow control

 Error Control

 Congestion control

23.39

Th b t f d t b i t f d i

Note

The bytes of data being transferred in
each connection are numbered by TCP.
S b• Sequence number

• Acknowledgment number
Th b i t t ith d lThe numbering starts with a randomly

generated number.

23.40

Example 23.3

The file is 5000 bytes, the first byte is numbered 10,001
each segment caries 1000 byteeach segment caries 1000 byte

The following shows the sequence number for each
segment:

23.41

TCP seq. #’s and ACKsq
Seq. #’s:

 byte stream
Host A Host B

byte stream
“number” of first
byte in segment’s
data

User
types
‘C’

host ACKs
i t f

ACKs:
 seq # of next byte

expected from other

receipt of
‘C’, echoes
back ‘C’

p
side

 cumulative ACK
Q: how receiver handles

host ACKs
receipt
of echoed
‘C’Q: how receiver handles

out-of-order segments
 A: TCP spec doesn’t

say - up to

C

time
say, up to
implementer

simple telnet scenario

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

Q: how to estimate RTT?
 SampleRTT: measured time fromtimeout value?

 longer than RTT
 but RTT varies

 SampleRTT: measured time from
segment transmission until ACK
receipt

ignore retransmissions
 too short: premature

timeout
 unnecessary

 ignore retransmissions
 SampleRTT will vary, want

estimated RTT “smoother”
l tretransmissions

 too long: slow reaction
to segment loss

 average several recent
measurements, not just current
SampleRTT

Note

The value in the sequence number field

Note

q
of a segment defines the

number of the first data byte y
contained in that segment.

23.44

Note

The value of the acknowledgment field
in a segment definesg

the number of the next byte a party
expects to receive.p

The acknowledgment number is
cumulative.

23.45

Figure 23.16 TCP segment format

23.46

Figure 23.17 Control field

23.47

Table 23.3 Description of flags in the control field

23.48

Figure 23.18 Connection establishment using three-way handshaking

23.49

A SYN t t d t b t it

Note

A SYN segment cannot carry data, but it
consumes one sequence number.

23.50

A SYN ACK t t

Note

A SYN + ACK segment cannot
carry data, but does consume one

bsequence number.

23.51

A ACK t if i d t

Note

An ACK segment, if carrying no data,
consumes no sequence number.

• Simultaneous open
SYN fl di tt k• SYN flooding attack

23.52

Figure 23.19 Data transfer

23.53

Figure 23.20 Connection termination using three-way handshaking

23.54

Th FIN t

Note

The FIN segment consumes one
sequence number if it does

t d tnot carry data.

23.55

Th FIN ACK t

Note

The FIN + ACK segment consumes
one sequence number if it

d t d tdoes not carry data.

23.56

Figure 23.21 Half-close

23.57

Figure 23.22 Sliding window

23.58

Note

A sliding window is used to make
t i i ffi i t lltransmission more efficient as well as
to control the flow of data so that the

destination does not becomedestination does not become
overwhelmed with data.

TCP sliding windows are byte orientedTCP sliding windows are byte-oriented.

23.59

Example 23.4

What is the value of the receiver window (rwnd) for host
A if the receiver, host B, has a buffer size of 5000 bytesA if the receiver, host B, has a buffer size of 5000 bytes
and 1000 bytes of received and unprocessed data?

S l tiSolution
The value of rwnd = 5000 − 1000 = 4000. Host B can
receive only 4000 bytes of data before overflowing itsreceive only 4000 bytes of data before overflowing its
buffer. Host B advertises this value in its next segment to
A.

23.60

Example 23.5

What is the size of the window for host A if the value of
rwnd is 3000 bytes and the value of cwnd is 3500 bytes?rwnd is 3000 bytes and the value of cwnd is 3500 bytes?

Solution
The size of the window is the smaller of rwnd and cwnd,f f ,
which is 3000 bytes.

23.61

Example 23.6

Figure 23.23 shows an unrealistic example of a sliding
window. The sender has sent bytes up to 202. We assumewindow. The sender has sent bytes up to 202. We assume
that cwnd is 20 (in reality this value is thousands of
bytes). The receiver has sent an acknowledgment number
of 200 with an rwnd of 9 bytes (in reality this value is
thousands of bytes). The size of the sender window is the

i i f d d d 9 b t B t 200 t 202minimum of rwnd and cwnd, or 9 bytes. Bytes 200 to 202
are sent, but not acknowledged. Bytes 203 to 208 can be
sent without worrying about acknowledgment. Bytes 209sent without worrying about acknowledgment. Bytes 209
and above cannot be sent.

23.62

Figure 23.23 Example 23.6

23.63

Note

Some points about TCP sliding windows:
❏ The size of the window is the lesser of rwnd and

Note

❏ The size of the window is the lesser of rwnd and
cwnd.

❏ The source does not have to send a full window’s
worth of data.

❏ The window can be opened or closed by the
receiver, but should not be shrunk.receiver, but should not be shrunk.

❏ The destination can send an acknowledgment at
any time as long as it does not result in a shrinking
windowwindow.

❏ The receiver can temporarily shut down the
window; the sender, however, can always send a

23.64

segment of 1 byte after the window is shut down.

ACK t d t

Note

ACK segments do not consume
sequence numbers and are not

k l d dacknowledged.

23.65

I d i l t ti

Note

In modern implementations, a
retransmission occurs if the

t i i ti i thretransmission timer expires or three
duplicate ACK segments have arrived.

23.66

N t i i ti i t f

Note

No retransmission timer is set for an
ACK segment.

23.67

• Retransmission after RTO
• Retransmission after three duplicate
ACK segments.g

•Data may arrive out of order and bey
temporarily stored by the receiving TCP,
but TCP guarantees that no out-of-orderg
segment is delivered to the process.

23.68

Figure 23.24 Normal operation

23.69

Figure 23.25 Lost segment

23.70

Th i TCP d li l d d

Note

The receiver TCP delivers only ordered
data to the process.

23.71

Figure 23.26 Fast retransmission

23.72

2323--4 SCTP4 SCTP

StreamStream ControlControl TransmissionTransmission ProtocolProtocol (SCTP)(SCTP) isis aa
newnew reliable,reliable, messagemessage--orientedoriented transporttransport layerlayer
protocolprotocol.. SCTP,SCTP, however,however, isis mostlymostly designeddesigned forfor
I t tI t t li tili ti th tth t hh tltl bbInternetInternet applicationsapplications thatthat havehave recentlyrecently beenbeen
introducedintroduced.. TheseThese newnew applicationsapplications needneed aa moremore
sophisticatedsophisticated serviceservice thanthan TCPTCP cancan provideprovidesophisticatedsophisticated serviceservice thanthan TCPTCP cancan provideprovide..

SCTP S i d F t
Topics discussed in this section:Topics discussed in this section:
SCTP Services and Features
Packet Format
An SCTP Association

23.73

Flow Control and Error Control

SCTP i i t d li bl

Note

SCTP is a message-oriented, reliable
protocol that combines the best features

f UDP d TCPof UDP and TCP.

23.74

Table 23.4 Some SCTP applications

23.75

Figure 23.27 Multiple-stream concept

23.76

A i ti i SCTP i l

Note

An association in SCTP can involve
multiple streams.

23.77

Figure 23.28 Multihoming concept - fault tolerance

23.78

SCTP i ti ll lti l IP

Note

SCTP association allows multiple IP
addresses for each end.

23.79

SCTP id F ll d l• SCTP provides Full-duplex
communication

C ti i t d i• Connection-oriented service
• Reliable service

I SCTP d t h k i b d• In SCTP, a data chunk is numbered
using a TSN.

23.80

T di ti i h b t diff t

Note

To distinguish between different
streams, SCTP uses an SI.

23.81

T di ti i h b t diff t d t

Note

To distinguish between different data
chunks belonging to the same stream,

SCTP SSNSCTP uses SSNs.

23.82

TCP h t SCTP h k t

Note

TCP has segments; SCTP has packets.

23.83

Figure 23.29 Comparison between a TCP segment and an SCTP packet

23.84

I SCTP t l i f ti d d t

Note

In SCTP, control information and data
information are carried in separate

h kchunks.

23.85

Figure 23.30 Packet, data chunks, and streams

23.86

Note

Data chunks are identified by three

Note

y
items: TSN, SI, and SSN.

TSN is a cumulative number identifying y g
the association; SI defines the stream;

SSN defines the chunk in a stream.

23.87

I SCTP k l d t b

Note

In SCTP, acknowledgment numbers are
used to acknowledge only data chunks;

t l h k k l d d bcontrol chunks are acknowledged by
other control chunks if necessary.

23.88

Figure 23.31 SCTP packet format

23.89

I SCTP k t t l h k

Note

In an SCTP packet, control chunks come
before data chunks.

23.90

Figure 23.32 General header

23.91

Table 23.5 Chunks

23.92

A ti i SCTP i ll d

Note

A connection in SCTP is called an
association.

23.93

N th h k i ll d i k t

Note

No other chunk is allowed in a packet
carrying an INIT or INIT ACK chunk.
A COOKIE ECHO COOKIE ACKA COOKIE ECHO or a COOKIE ACK

chunk can carry data chunks.

23.94

Figure 23.33 Four-way handshaking

23.95

I SCTP l DATA h k

Note

In SCTP, only DATA chunks
consume TSNs;

DATA h k th l h kDATA chunks are the only chunks
that are acknowledged.

23.96

Figure 23.34 Simple data transfer

23.97

Th k l d t i SCTP d fi

Note

The acknowledgment in SCTP defines
the cumulative TSN, the TSN of the last

d t h k i d i ddata chunk received in order.

23.98

Figure 23.35 Association termination

23.99

Figure 23.36 Flow control, receiver site

23.100

Figure 23.37 Flow control, sender site

23.101

Figure 23.38 Flow control scenario

23.102

Figure 23.39 Error control, receiver site

23.103

Figure 23.40 Error control, sender site

23.104

