
Network Programming

Dr. Thaier Hayajneh
C t  E i i  D t tComputer Engineering Department

TCP P t lTCP Protocol

1

OutlineOutl ne
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segment structure

li bl  d  freliable data transfer

flow control

connection management

Principles of congestion control

TCP congestion control
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TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581TCP  Overv ew RFCs  793, , 3 3, 0 8, 58

full duplex data:point-to-point: p
bi-directional data flow 
in same connection
MSS: maximum segment 

p p
one sender, one receiver

reliable, in-order byte 
steam: MSS  max mum segment 

size
connection-oriented:

h ndsh kin  ( xch n  

steam:
no “message boundaries”

pipelined:
handshaking (exchange 
of control msgs) init’s 
sender, receiver state 
before data exchange

p p
TCP congestion and flow 
control set window size

send & receive buffers before data exchange
flow controlled:

sender will not 
h l  

send & receive buffers

socket
door

socket
d

application
writes data

application
reads data

overwhelm receiverdoor
TCP

send buffer
TCP

receive buffer

door

segment
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TCP segment structure

source port # dest port #

32 bits
URG: urgent data 

(generally not used)
counting
by bytes 

sequence number
acknowledgement number

Receive windowFSRPAUhead not

(generally not used)

ACK: ACK #
valid

PSH  h d  

by bytes 
of data
(not segments!)

Receive window
Urg data pnterchecksum

FSRPAUlen used

Options (variable length)

PSH: push data now
(generally not used)

RST, SYN, FIN:

# bytes 
rcvr willing
to accept

application

Options (variable length), ,
connection estab
(setup, teardown

commands) pp
data 

(variable length)
Internet

checksum
(as in UDP)
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TCP seq. #’s and ACKsTCP seq. # s and ACKs
Seq. #’s:

byte stream 
Host A Host B

y m
“number” of first 
byte in segment’s 
data

User
types

‘C’
host ACKs

i t fACKs:
seq # of next byte 
expected from 

receipt of
‘C’, echoes

back ‘C’
p f

other side
cumulative ACK

Q: how receiver handles 

host ACKs
receipt 

of echoed
‘C’Q: how receiver handles 

out-of-order segments
A: TCP spec doesn’t 
say  - up to 

‘C’

timesay, up to 
implementor simple telnet scenario
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TCP Round Trip Time and Timeoutp

Q: how to set TCP 
timeout value?

Q: how to estimate RTT?
SampleRTT: measured time from timeout value?

longer than RTT
but RTT varies

SampleRTT: measured time from 
segment transmission until ACK 
receipt

ignore retransmissionstoo short: premature 
timeout

unnecessary 

ignore retransmissions
SampleRTT will vary, want 
estimated RTT “smoother”

 l t retransmissions
too long: slow reaction 
to segment loss

average several recent 
measurements, not just 
current SampleRTT
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TCP Round Trip Time and Timeoutp

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125
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Example RTT estimation:p
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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SampleRTT Estimated RTT
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TCP Round Trip Time and Timeoutp

Setting the timeout
l  “ f  ”EstimtedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin
first estimate of how much SampleRTT deviates from 
EstimatedRTT: 

DevRTT = (1-β)*DevRTT +
β*|SampleRTT EstimatedRTT|β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT
Then set timeout interval:
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TCP reliable data transferTCP rel able data transfer

TCP creates rdt Retransmissions are 
service on top of IP’s 
unreliable service
Pi li d s ts

triggered by:
timeout events
duplicate acksPipelined segments

Cumulative acks
TCP uses single 

duplicate acks
Initially consider 
simplified TCP sender:TCP uses single 

retransmission timer
p
ignore duplicate acks
ignore flow control, 
congestion controlg
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TCP sender events:
data rcvd from app:

Create segment with 
timeout:

retransmit segment 
seq #
seq # is byte-stream 
number of first data 

that caused timeout
restart timer

Ack rcvd:number of first data 
byte in  segment
start timer if not 

Ack rcvd:
If acknowledges 
previously unacked 

already running (think 
of timer as for oldest 
unacked segment)

p y
segments

update what is known to 
be ackedunacked segment)

expiration interval: 
TimeOutInterval 

be acked
start timer if there are  
outstanding segments
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TCP 
NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

(f ) { TCP 
sender
(simplifi d)

loop (forever) {
switch(event)

event: data received from application above 
TCP i h b N S N (simplified)create TCP segment with sequence number NextSeqNum 

if (timer currently not running)
start timer

pass segment to IP 
N tS N N tS N l th(d t )

Comment:
NextSeqNum = NextSeqNum + length(data) 

event: timer timeout
retransmit not-yet-acknowledged segment with 

ll t b

mm n
• SendBase-1: last 
cumulatively 
ack’ed byte
Example:smallest sequence number

start timer

event: ACK received, with ACK field value of y 
if ( S dB ) {

Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;

if (y > SendBase) { 
SendBase = y

if (there are currently not-yet-acknowledged segments)
start timer 

}

y > SendBase, so
that new data is 
acked

} 

}  /* end of loop forever */
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TCP: retransmission scenarios
Host A Host BHost A Host B

ti
m

eo
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loss

ti
m

eo

X

S db

2 
ti

m
eo

ut

SendBase
= 120

Sendbase
= 100

premature timeout
Se

q=
92

SendBase
= 100 SendBase

= 120
time

premature timeout

lost ACK scenario
time

 120
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TCP retransmission scenarios (more)m (m )
Host A Host B

ou
t

loss

ti
m

eo

X

SendBase
= 120

Cumulative ACK scenario
time

Cumulative ACK scenario
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TCP ACK generation [RFC 1122, RFC 2581]TCP ACK generat on [RFC , RFC 58 ]

Event at Receiver TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACKexpected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 

send ACK

Immediately send single cumulative 
ACK, ACKing both in-order segments 

segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq #

Immediately send duplicate ACK, 
indicating seq # of next expected bytehigher than expect seq. # .

Gap detected

Arrival of segment that 
ti ll l t l fill

indicating seq. # of next expected byte

Immediate send ACK, provided that
t t t t l d fpartially or completely fills gap segment starts at lower end of gap
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Fast  RetransmitFast  Retransm t

Time-out period  often If sender receives 3 p f
relatively long:

long delay before 
resending lost packet

f
ACKs for the same 
data, it supposes that 
segment after ACKed resending lost packet

Detect lost segments 
via duplicate ACKs.

segment after ACKed 
data was lost:

fast retransmit: resend 
t b f  ti  Sender often sends 

many segments back-to-
back

segment before timer 
expires

If segment is lost, 
there will likely be many 
duplicate ACKs.
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Host A Host B

X
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ut
ti

m
e

time

Resending a segment after triple duplicate ACK 17

Fast retransmit algorithm:

t ACK i d ith ACK fi ld l f

Fast retransm t algor thm

event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)( y y g g )

start timer 
} 

else { 
increment count of dup ACKs received for yincrement count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

a duplicate ACK for 
already ACKed segment

fast retransmit
already ACKed segment
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TCP Flow ControlTCP Flow Control

receive side of TCP sender won’t overflow
receiver’s buffer by

flow control
f

connection has a 
receive buffer:

receiver s buffer by
transmitting too much,

too fast

speed-matching 
service: matching the service: matching the 
send rate to the 
receiving app’s drain 

trateapp process may be 
slow at reading from 
bufferbuffer
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TCP Flow control: how it worksTCP Flow control  how t works
Rcvr advertises spare 

 b  i l di  l  room by including value 
of RcvWindow in 
segments

(Suppose TCP receiver 
discards out-of-order 

g
Sender limits unACKed 
data to RcvWindow

t  i  discards out of order 
segments)
spare room in buffer

guarantees receive 
buffer doesn’t overflow

= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]
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TCP Connection Management
Th   h d h kRecall: TCP sender, receiver 

establish “connection” 
before exchanging data 

Three way handshake:
Step 1: client host sends TCP 

SYN   segments
initialize TCP variables:

seq. #s

SYN segment to server
specifies initial seq #
no dataq

buffers, flow control 
info (e.g. RcvWindow)

client: connection initiator

Step 2: server host receives 
SYN, replies with SYNACK 
segmentclient: connection initiator

server: contacted by client

segment
server allocates buffers
specifies server initial 
seq  #seq. #

Step 3: client receives SYNACK, 
replies with ACK segment, 
which may contain datawhich may contain data
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TCP Connection Management (cont )TCP Connection Management (cont.)

Closing a connection: client serverClosing a connection:

client closes socket:
clientSocket.close();

client server

close

();
Step 1: client end system 

sends TCP FIN control 
close

segment to server

Step 2: server receives 
FIN  li  i h ACK  

wa
it

FIN, replies with ACK. 
Closes connection, sends 
FIN. closed

ti
m

ed
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TCP Connection Management (cont )TCP Connection Management (cont.)

Step 3: client receives FIN  client serverStep 3: client receives FIN, 
replies with ACK. 

Enters “timed wait” -

client server

closing

will respond with ACK 
to received FINs 

Step 4: server  receives 
closing

Step 4: server, receives 
ACK.  Connection closed. 

Note: with small wa
it

l d
Note with small 

modification, can handle 
simultaneous FINs.

closed

ti
m

ed
 closed

23

TCP Connection Management (cont)g

TCP server

TCP li

TCP server
lifecycle

TCP client
lifecycle
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Principles of Congestion Controlp f g

Congestion:Congestion:
informally: “too many sources sending too much 
data too fast for network to handle”
different from flow control!
manifestations:

l t k t  (b ff  fl  t t )lost packets (buffer overflow at routers)
long delays (queueing in router buffers)

a top 10 problem!a top-10 problem!
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Causes/costs of congestion: scenario 1Causes/costs of congest on  scenar o 

two senders, two 
i

Host A
λin : original data

λout

receivers
one router, 
infinite buffers 

unlimited shared 
output link buffers

Host B

infinite buffers 
no retransmission

large delays 
when congestedg
maximum 
achievable 
th h tthroughput
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Causes/costs of congestion: scenario 2Causes/costs of congest on  scenar o 

one router, finite buffers 
sender retransmission of lost packet

H t A λHost A λin : original 
data

λout

λ'in : original data, plus 
retransmitted data

finite shared output 
link buffers

Host B
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Causes/costs of congestion: scenario 2
always:                   (goodput)
“perfect” retransmission only when loss:

  l  (  l ) k  k          l  

λ
in

λout=

λ
in

λout>
λretransmission of delayed (not lost) packet makes         larger 

(than perfect case) for same
λ

in
λout

R/2

λ o
ut

R/2

λ o
ut

R/2

λ o
ut

R/4

R/3

R/2
λin

R/2
λin

R/2
λin

“costs” of congestion:
more work (retrans) for given “goodput”

b.a. c.

more work (retrans) for given goodput
unneeded retransmissions: link carries multiple copies of pkt
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Causes/costs of congestion: scenario 3Causes/costs of congest on  scenar o 3
four senders
multihop paths

λ
in

Q: what happens as      
and     increase ?λp p

timeout/retransmit
and     increase ?λ

in

Host A
λin : original data λout

finite shared output 
link buffers

λ'in : original data, plus 
retransmitted data

link buffers

Host B

29

Causes/costs of congestion: scenario 3Causes/costs of congest on  scenar o 3
H
o
s

λ
o
ut 

A

H
o
s

u
t

s
t 
B

Another “cost” of congestion:Another cost  of congestion:
when packet dropped, any “upstream transmission 
capacity used for that packet was wasted!
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Approaches towards congestion controlpp g

Two broad approaches towards congestion control:

End-end congestion 
control:

Network-assisted 
congestion control:

no explicit feedback from 
network
congestion inferred from 

routers provide feedback 
to end systems

single bit indicating g f f m
end-system observed loss, 
delay
approach taken by TCP

g g
congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM)pp y
explicit rate sender 
should send at
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TCP congestion control: additive increase, 
lti li ti  dmultiplicative decrease

Approach: increase transmission rate (window size), 
probing for usable bandwidth  until loss occursprobing for usable bandwidth, until loss occurs

additive increase: increase  CongWin by 1 MSS 
every RTT until loss detected

congestion
window

y
multiplicative decrease: cut CongWin in half after 
loss 

e

16 Kbytes

24 Kbytes

w
in

do
w

 s
iz

e

Saw tooth
behavior: probing

8 Kbytes

tico
ng

es
tio

n 
wp ng

for bandwidth

timetimec
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TCP Congestion Control: detailsTCP Congest on Control  deta ls

sender limits transmission: How does  sender 
LastByteSent-LastByteAcked

≤ CongWin
R hl

perceive congestion?
loss event = timeout or
3 d li t  ksRoughly, 3 duplicate acks
TCP sender reduces 
rate (CongWin) after rate = CongWin

RTT Bytes/sec

CongWin is dynamic, function 
of perceived network 

( g ) f
loss event

three mechanisms:
congestion AIMD

slow start
conservative after 
timeout events
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TCP Slow StartTCP Slow Start

When connection begins, When connection begins, g ,
CongWin = 1 MSS

Example: MSS = 500 
bytes & RTT = 200 msec

g ,
increase rate 
exponentially fast until 
first loss eventbytes & RTT = 200 msec

initial rate = 20 kbps
available bandwidth may 
b   M /RTT

first loss event

be >> MSS/RTT
desirable to quickly ramp 
up to respectable rate
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TCP Slow Start (more)TCP Slow Start (more)

When connection Host A Host B
begins, increase rate 
exponentially until 
first loss event:

Host A

RT
T

Host B

first loss event:
double CongWin every 
RTT
d  b  i ti  done by incrementing 
CongWin for every ACK 
received

i i i l  Summary: initial rate 
is slow but ramps up 
exponentially fast timep y
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Refinement: inferring lossRef nement  nferr ng loss
After 3 dup ACKs:

CongWin is cut in half
window then grows 
li l 3 dup ACKs indicates 

Philosophy:

linearly
But after timeout event:

CongWin instead set to 

3 dup ACKs indicates 
network capable of 
delivering some segments

 d   CongWin instead set to 
1 MSS; 
window then grows 

timeout indicates a 
“more alarming” 
congestion scenario

exponentially
to a threshold, then 
grows linearly

g

grows linearly
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Refinement
Q: When should the 

exponential 
i  it h t  increase switch to 
linear? 

A: When CongWin
t  t  1/2 f it  gets to 1/2 of its 

value before 
timeout.

Implementation:
Variable Threshold 
At l  t  Th h ld i  At loss event, Threshold is 
set to 1/2 of CongWin just 
before loss event
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S  TCP C ti  C t lSummary: TCP Congestion Control

When CongWin is below Threshold  sender in When CongWin is below Threshold, sender in 
slow-start phase, window grows exponentially.

When CongWin is above Threshold  sender is in When CongWin is above Threshold, sender is in 
congestion-avoidance phase, window grows linearly.

When a triple duplicate ACK occurs  ThresholdWhen a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to 
Threshold.

When timeout occurs, Threshold set to 
CongWin/2 and CongWin is set to 1 MSS.
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TCP sender congestion control
State Event TCP Sender Action Commentary

Slow Start 
(SS)

ACK receipt 
for previously

CongWin = CongWin + MSS, 
If (CongWin > Threshold)

Resulting in a doubling of 
CongWin every RTT(SS) for previously 

unacked 
data 

If (CongWin > Threshold)
set state to “Congestion             

Avoidance”

CongWin every RTT

Congestion
Avoidance

ACK receipt 
for previously

CongWin = CongWin+MSS * 
(MSS/CongWin)

Additive increase, resulting 
in increase of CongWin byAvoidance 

(CA) 
for previously 
unacked 
data

(MSS/CongWin) in increase of CongWin  by 
1 MSS every RTT

SS or CA Loss event 
detected by

Threshold = CongWin/2,      
CongWin = Threshold,

Fast recovery, 
implementing multiplicativedetected by 

triple 
duplicate 
ACK

CongWin  Threshold,
Set state to “Congestion 
Avoidance”

implementing multiplicative 
decrease. CongWin will not 
drop below 1 MSS.

SS or CA Timeout Threshold = CongWin/2,      Enter slow startg
CongWin = 1 MSS,
Set state to “Slow Start”

SS or CA Duplicate 
ACK

Increment duplicate ACK count 
for segment being acked

CongWin and Threshold not 
changed
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TCP throughputTCP throughput

What’s the average throughout of TCP as a What s the average throughout of TCP as a 
function of window size and RTT?

Ignore slow startg
Let W be the window size when loss occurs.
When window is W, throughput is W/RTT, g p
Just after loss, window drops to W/2, 
throughput to W/2RTT. g p
Average throughout: .75 W/RTT
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TCP Futures: TCP over “long, fat pipes”g, p p

Example: 1500 byte segments, 100ms RTT, want 10 p y g , ,
Gbps throughput
Requires window size W = 83,333 in-flight 
s tssegments
Throughput in terms of loss rate:

MSS221

➜ L  2 10 10  W
LRTT

MSS⋅22.1

➜ L = 2·10-10  Wow
New versions of TCP for high-speed
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TCP Fairness
Fairness goal: if K TCP sessions share same 

b ttleneck link f b nd idth R  e ch sh uld h ve bottleneck link of bandwidth R, each should have 
average rate of R/K

TCP connection 1

bottleneck
utTCP router

capacity Rconnection 2
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Why is TCP fair?Why s TCP fa r?
Two competing sessions:

Additi  i  i  l  f 1   th h t iAdditive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally 

R l b d idth hR equal bandwidth share

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase

RConnection 1 throughput
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Fairness (more)
Fairness and UDP

Multimedia apps often 
Fairness and parallel TCP 

connections
hi    f  

pp
do not use TCP

do not want rate 
throttled by congestion 

nothing prevents app from 
opening parallel 
connections between 2 
h

y g
control

Instead use UDP:
pump audio/video at 

hosts.
Web browsers do this 
Example: link of rate R p p

constant rate, tolerate 
packet loss

Research area: TCP 

Example: link of rate R 
supporting 9 connections; 

new app asks for 1 TCP, gets 
rate R/10

friendly
rate R/10
new app asks for 11 TCPs, 
gets R/2 !
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