
Network Programming

Dr. Thaier Hayajneh
C t E i i D t tComputer Engineering Department

TCP P t lTCP Protocol

1

OutlineOutl ne

Connection oriented transport: TCPConnection-oriented transport: TCP

segment structure

li bl d freliable data transfer

flow control

connection management

Principles of congestion control

TCP congestion control

2

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581TCP Overv ew RFCs 793, , 3 3, 0 8, 58

full duplex data:point-to-point: p
bi-directional data flow
in same connection
MSS: maximum segment

p p
one sender, one receiver

reliable, in-order byte
steam: MSS max mum segment

size
connection-oriented:

h ndsh kin (xch n

steam:
no “message boundaries”

pipelined:
handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

p p
TCP congestion and flow
control set window size

send & receive buffers before data exchange
flow controlled:

sender will not
h l

send & receive buffers

socket
door

socket
d

application
writes data

application
reads data

overwhelm receiverdoor
TCP

send buffer
TCP

receive buffer

door

segment

3

TCP segment structure

source port # dest port #

32 bits
URG: urgent data

(generally not used)
counting
by bytes

sequence number
acknowledgement number

Receive windowFSRPAUhead not

(generally not used)

ACK: ACK #
valid

PSH h d

by bytes
of data
(not segments!)

Receive window
Urg data pnterchecksum

FSRPAUlen used

Options (variable length)

PSH: push data now
(generally not used)

RST, SYN, FIN:

bytes
rcvr willing
to accept

application

Options (variable length), ,
connection estab
(setup, teardown

commands) pp
data

(variable length)
Internet

checksum
(as in UDP)

4

TCP seq. #’s and ACKsTCP seq. # s and ACKs
Seq. #’s:

byte stream
Host A Host B

y m
“number” of first
byte in segment’s
data

User
types

‘C’
host ACKs

i t fACKs:
seq # of next byte
expected from

receipt of
‘C’, echoes

back ‘C’
p f

other side
cumulative ACK

Q: how receiver handles

host ACKs
receipt

of echoed
‘C’Q: how receiver handles

out-of-order segments
A: TCP spec doesn’t
say - up to

‘C’

timesay, up to
implementor simple telnet scenario

5

TCP Round Trip Time and Timeoutp

Q: how to set TCP
timeout value?

Q: how to estimate RTT?
SampleRTT: measured time from timeout value?

longer than RTT
but RTT varies

SampleRTT: measured time from
segment transmission until ACK
receipt

ignore retransmissionstoo short: premature
timeout

unnecessary

ignore retransmissions
SampleRTT will vary, want
estimated RTT “smoother”

 l t retransmissions
too long: slow reaction
to segment loss

average several recent
measurements, not just
current SampleRTT

6

TCP Round Trip Time and Timeoutp

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125

7

Example RTT estimation:p
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

300

250
T

(m
ill

ise
co

nd
s)

150

200RT

100
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)time (seconnds)

SampleRTT Estimated RTT

8

TCP Round Trip Time and Timeoutp

Setting the timeout
l “ f ”EstimtedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin
first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-β)*DevRTT +
β*|SampleRTT EstimatedRTT|β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT
Then set timeout interval:

9

TCP reliable data transferTCP rel able data transfer

TCP creates rdt Retransmissions are
service on top of IP’s
unreliable service
Pi li d s ts

triggered by:
timeout events
duplicate acksPipelined segments

Cumulative acks
TCP uses single

duplicate acks
Initially consider
simplified TCP sender:TCP uses single

retransmission timer
p
ignore duplicate acks
ignore flow control,
congestion controlg

10

TCP sender events:
data rcvd from app:

Create segment with
timeout:

retransmit segment
seq #
seq # is byte-stream
number of first data

that caused timeout
restart timer

Ack rcvd:number of first data
byte in segment
start timer if not

Ack rcvd:
If acknowledges
previously unacked

already running (think
of timer as for oldest
unacked segment)

p y
segments

update what is known to
be ackedunacked segment)

expiration interval:
TimeOutInterval

be acked
start timer if there are
outstanding segments

11

TCP
NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

(f) { TCP
sender
(simplifi d)

loop (forever) {
switch(event)

event: data received from application above
TCP i h b N S N (simplified)create TCP segment with sequence number NextSeqNum

if (timer currently not running)
start timer

pass segment to IP
N tS N N tS N l th(d t)

Comment:
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

ll t b

mm n
• SendBase-1: last
cumulatively
ack’ed byte
Example:smallest sequence number

start timer

event: ACK received, with ACK field value of y
if (S dB) {

Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;

if (y > SendBase) {
SendBase = y

if (there are currently not-yet-acknowledged segments)
start timer

}

y > SendBase, so
that new data is
acked

}

} /* end of loop forever */
12

TCP: retransmission scenarios
Host A Host BHost A Host B

ti
m

eo
ut

ou
t

Se
q=

92

loss

ti
m

eo

X

S db

2
ti

m
eo

ut

SendBase
= 120

Sendbase
= 100

premature timeout
Se

q=
92

SendBase
= 100 SendBase

= 120
time

premature timeout

lost ACK scenario
time

 120

13

TCP retransmission scenarios (more)m (m)
Host A Host B

ou
t

loss

ti
m

eo

X

SendBase
= 120

Cumulative ACK scenario
time

Cumulative ACK scenario

14

TCP ACK generation [RFC 1122, RFC 2581]TCP ACK generat on [RFC , RFC 58]

Event at Receiver TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACKexpected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other

send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq #

Immediately send duplicate ACK,
indicating seq # of next expected bytehigher than expect seq. # .

Gap detected

Arrival of segment that
ti ll l t l fill

indicating seq. # of next expected byte

Immediate send ACK, provided that
t t t t l d fpartially or completely fills gap segment starts at lower end of gap

15

Fast RetransmitFast Retransm t

Time-out period often If sender receives 3 p f
relatively long:

long delay before
resending lost packet

f
ACKs for the same
data, it supposes that
segment after ACKed resending lost packet

Detect lost segments
via duplicate ACKs.

segment after ACKed
data was lost:

fast retransmit: resend
t b f ti Sender often sends

many segments back-to-
back

segment before timer
expires

If segment is lost,
there will likely be many
duplicate ACKs.

16

Host A Host B

X
eo

ut
ti

m
e

time

Resending a segment after triple duplicate ACK 17

Fast retransmit algorithm:

t ACK i d ith ACK fi ld l f

Fast retransm t algor thm

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)(y y g g)

start timer
}

else {
increment count of dup ACKs received for yincrement count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

a duplicate ACK for
already ACKed segment

fast retransmit
already ACKed segment

18

TCP Flow ControlTCP Flow Control

receive side of TCP sender won’t overflow
receiver’s buffer by

flow control
f

connection has a
receive buffer:

receiver s buffer by
transmitting too much,

too fast

speed-matching
service: matching the service: matching the
send rate to the
receiving app’s drain

trateapp process may be
slow at reading from
bufferbuffer

19

TCP Flow control: how it worksTCP Flow control how t works
Rcvr advertises spare

 b i l di l room by including value
of RcvWindow in
segments

(Suppose TCP receiver
discards out-of-order

g
Sender limits unACKed
data to RcvWindow

t i discards out of order
segments)
spare room in buffer

guarantees receive
buffer doesn’t overflow

= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

20

TCP Connection Management
Th h d h kRecall: TCP sender, receiver

establish “connection”
before exchanging data

Three way handshake:
Step 1: client host sends TCP

SYN segments
initialize TCP variables:

seq. #s

SYN segment to server
specifies initial seq #
no dataq

buffers, flow control
info (e.g. RcvWindow)

client: connection initiator

Step 2: server host receives
SYN, replies with SYNACK
segmentclient: connection initiator

server: contacted by client

segment
server allocates buffers
specifies server initial
seq #seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain datawhich may contain data

21

TCP Connection Management (cont)TCP Connection Management (cont.)

Closing a connection: client serverClosing a connection:

client closes socket:
clientSocket.close();

client server

close

();
Step 1: client end system

sends TCP FIN control
close

segment to server

Step 2: server receives
FIN li i h ACK

wa
it

FIN, replies with ACK.
Closes connection, sends
FIN. closed

ti
m

ed

22

TCP Connection Management (cont)TCP Connection Management (cont.)

Step 3: client receives FIN client serverStep 3: client receives FIN,
replies with ACK.

Enters “timed wait” -

client server

closing

will respond with ACK
to received FINs

Step 4: server receives
closing

Step 4: server, receives
ACK. Connection closed.

Note: with small wa
it

l d
Note with small

modification, can handle
simultaneous FINs.

closed

ti
m

ed
 closed

23

TCP Connection Management (cont)g

TCP server

TCP li

TCP server
lifecycle

TCP client
lifecycle

24

Principles of Congestion Controlp f g

Congestion:Congestion:
informally: “too many sources sending too much
data too fast for network to handle”
different from flow control!
manifestations:

l t k t (b ff fl t t)lost packets (buffer overflow at routers)
long delays (queueing in router buffers)

a top 10 problem!a top-10 problem!

25

Causes/costs of congestion: scenario 1Causes/costs of congest on scenar o

two senders, two
i

Host A
λin : original data

λout

receivers
one router,
infinite buffers

unlimited shared
output link buffers

Host B

infinite buffers
no retransmission

large delays
when congestedg
maximum
achievable
th h tthroughput

26

Causes/costs of congestion: scenario 2Causes/costs of congest on scenar o

one router, finite buffers
sender retransmission of lost packet

H t A λHost A λin : original
data

λout

λ'in : original data, plus
retransmitted data

finite shared output
link buffers

Host B

27

Causes/costs of congestion: scenario 2
always: (goodput)
“perfect” retransmission only when loss:

 l (l) k k l

λ
in

λout=

λ
in

λout>
λretransmission of delayed (not lost) packet makes larger

(than perfect case) for same
λ

in
λout

R/2

λ o
ut

R/2

λ o
ut

R/2

λ o
ut

R/4

R/3

R/2
λin

R/2
λin

R/2
λin

“costs” of congestion:
more work (retrans) for given “goodput”

b.a. c.

more work (retrans) for given goodput
unneeded retransmissions: link carries multiple copies of pkt

28

Causes/costs of congestion: scenario 3Causes/costs of congest on scenar o 3
four senders
multihop paths

λ
in

Q: what happens as
and increase ?λp p

timeout/retransmit
and increase ?λ

in

Host A
λin : original data λout

finite shared output
link buffers

λ'in : original data, plus
retransmitted data

link buffers

Host B

29

Causes/costs of congestion: scenario 3Causes/costs of congest on scenar o 3
H
o
s

λ
o
ut

A

H
o
s

u
t

s
t
B

Another “cost” of congestion:Another cost of congestion:
when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

30

Approaches towards congestion controlpp g

Two broad approaches towards congestion control:

End-end congestion
control:

Network-assisted
congestion control:

no explicit feedback from
network
congestion inferred from

routers provide feedback
to end systems

single bit indicating g f f m
end-system observed loss,
delay
approach taken by TCP

g g
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)pp y
explicit rate sender
should send at

31

TCP congestion control: additive increase,
lti li ti dmultiplicative decrease

Approach: increase transmission rate (window size),
probing for usable bandwidth until loss occursprobing for usable bandwidth, until loss occurs

additive increase: increase CongWin by 1 MSS
every RTT until loss detected

congestion
window

y
multiplicative decrease: cut CongWin in half after
loss

e

16 Kbytes

24 Kbytes

w
in

do
w

 s
iz

e

Saw tooth
behavior: probing

8 Kbytes

tico
ng

es
tio

n
wp ng

for bandwidth

timetimec

32

TCP Congestion Control: detailsTCP Congest on Control deta ls

sender limits transmission: How does sender
LastByteSent-LastByteAcked

≤ CongWin
R hl

perceive congestion?
loss event = timeout or
3 d li t ksRoughly, 3 duplicate acks
TCP sender reduces
rate (CongWin) after rate = CongWin

RTT Bytes/sec

CongWin is dynamic, function
of perceived network

(g) f
loss event

three mechanisms:
congestion AIMD

slow start
conservative after
timeout events

33

TCP Slow StartTCP Slow Start

When connection begins, When connection begins, g ,
CongWin = 1 MSS

Example: MSS = 500
bytes & RTT = 200 msec

g ,
increase rate
exponentially fast until
first loss eventbytes & RTT = 200 msec

initial rate = 20 kbps
available bandwidth may
b M /RTT

first loss event

be >> MSS/RTT
desirable to quickly ramp
up to respectable rate

34

TCP Slow Start (more)TCP Slow Start (more)

When connection Host A Host B
begins, increase rate
exponentially until
first loss event:

Host A

RT
T

Host B

first loss event:
double CongWin every
RTT
d b i ti done by incrementing
CongWin for every ACK
received

i i i l Summary: initial rate
is slow but ramps up
exponentially fast timep y

35

Refinement: inferring lossRef nement nferr ng loss
After 3 dup ACKs:

CongWin is cut in half
window then grows
li l 3 dup ACKs indicates

Philosophy:

linearly
But after timeout event:

CongWin instead set to

3 dup ACKs indicates
network capable of
delivering some segments

 d CongWin instead set to
1 MSS;
window then grows

timeout indicates a
“more alarming”
congestion scenario

exponentially
to a threshold, then
grows linearly

g

grows linearly

36

Refinement
Q: When should the

exponential
i it h t increase switch to
linear?

A: When CongWin
t t 1/2 f it gets to 1/2 of its

value before
timeout.

Implementation:
Variable Threshold
At l t Th h ld i At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

37

S TCP C ti C t lSummary: TCP Congestion Control

When CongWin is below Threshold sender in When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

When CongWin is above Threshold sender is in When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

When a triple duplicate ACK occurs ThresholdWhen a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

38

TCP sender congestion control
State Event TCP Sender Action Commentary

Slow Start
(SS)

ACK receipt
for previously

CongWin = CongWin + MSS,
If (CongWin > Threshold)

Resulting in a doubling of
CongWin every RTT(SS) for previously

unacked
data

If (CongWin > Threshold)
set state to “Congestion

Avoidance”

CongWin every RTT

Congestion
Avoidance

ACK receipt
for previously

CongWin = CongWin+MSS *
(MSS/CongWin)

Additive increase, resulting
in increase of CongWin byAvoidance

(CA)
for previously
unacked
data

(MSS/CongWin) in increase of CongWin by
1 MSS every RTT

SS or CA Loss event
detected by

Threshold = CongWin/2,
CongWin = Threshold,

Fast recovery,
implementing multiplicativedetected by

triple
duplicate
ACK

CongWin Threshold,
Set state to “Congestion
Avoidance”

implementing multiplicative
decrease. CongWin will not
drop below 1 MSS.

SS or CA Timeout Threshold = CongWin/2, Enter slow startg
CongWin = 1 MSS,
Set state to “Slow Start”

SS or CA Duplicate
ACK

Increment duplicate ACK count
for segment being acked

CongWin and Threshold not
changed

39

TCP throughputTCP throughput

What’s the average throughout of TCP as a What s the average throughout of TCP as a
function of window size and RTT?

Ignore slow startg
Let W be the window size when loss occurs.
When window is W, throughput is W/RTT, g p
Just after loss, window drops to W/2,
throughput to W/2RTT. g p
Average throughout: .75 W/RTT

40

TCP Futures: TCP over “long, fat pipes”g, p p

Example: 1500 byte segments, 100ms RTT, want 10 p y g , ,
Gbps throughput
Requires window size W = 83,333 in-flight
s tssegments
Throughput in terms of loss rate:

MSS221

➜ L 2 10 10 W
LRTT

MSS⋅22.1

➜ L = 2·10-10 Wow
New versions of TCP for high-speed

41

TCP Fairness
Fairness goal: if K TCP sessions share same

b ttleneck link f b nd idth R e ch sh uld h ve bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
utTCP router

capacity Rconnection 2

42

Why is TCP fair?Why s TCP fa r?
Two competing sessions:

Additi i i l f 1 th h t iAdditive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally

R l b d idth hR equal bandwidth share

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase

RConnection 1 throughput

43

Fairness (more)
Fairness and UDP

Multimedia apps often
Fairness and parallel TCP

connections
hi f

pp
do not use TCP

do not want rate
throttled by congestion

nothing prevents app from
opening parallel
connections between 2
h

y g
control

Instead use UDP:
pump audio/video at

hosts.
Web browsers do this
Example: link of rate R p p

constant rate, tolerate
packet loss

Research area: TCP

Example: link of rate R
supporting 9 connections;

new app asks for 1 TCP, gets
rate R/10

friendly
rate R/10
new app asks for 11 TCPs,
gets R/2 !

44

