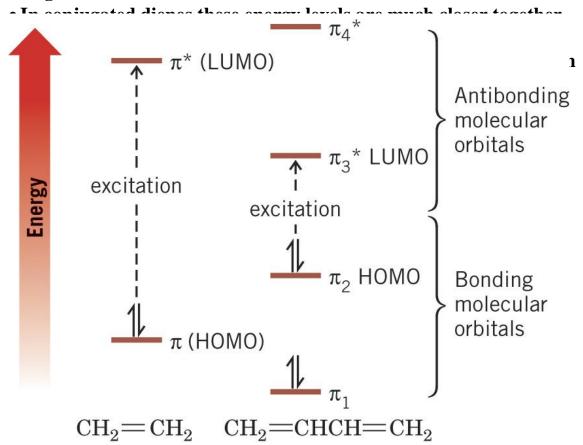
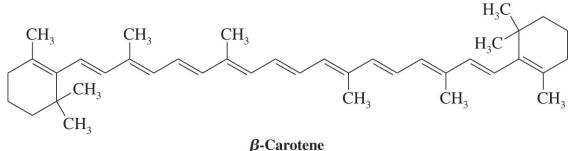

• The wavelength of maximum absorption (λ max) is reported in units of nanometers (nm)

Example: UV absorption spectrum of 2,5-dimethyl-2,4-hexadiene in methanol at a concentration of 5.95×10^{-5} M in a 1.0 cm cell

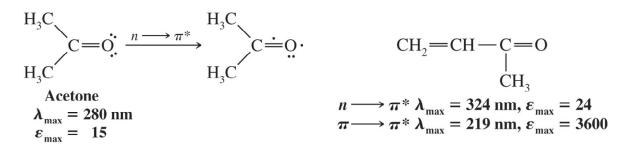


2,5-Dimethyl-2,4 hexadiene, $\lambda_{\text{max}}^{\text{methanol}}$ 242.5 nm ($\varepsilon = 13,100$)


Absorption Maxima for Nonconjugated and Conjugated Dienes:

§In UV-Vis spectroscopy, the electrons are excited from lower energy levels to higher ones

- The electron is generally excited from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO)
- Alkenes and nonconjugated dienes have absorptions below 200 nm because the energy difference between the HOMO and LUMO is large


- **§The longer the conjugated system, the smaller the energy difference between the HOMO and the LUMO.**
 - \bullet A smaller energy gap results in longer λmax in the ultraviolet visible spectrum
 - β -Carotene has 11 conjugated double bonds and an absorbance maximum at 497 nm which is in the blue-green region of the visible spectrum
 - \bullet $\beta\mathchar`-Carotene is perceived as red-orange, the complementary color of blue-green$

p-Carotene

§Carbonyl compounds also absorb light in the UV region:

• An unshared (n) electron on oxygen is promoted to a π^* orbital

<u>13.11) Electrophilic Attack on Conjugated Dienes:</u> <u>1,4 Addition:</u>

§ When 1,3-butadiene reacts with one equivalent of HCl at room temperature 78% of the 1,2 addition product and 22% of the 1,4 addition product are obtained

$$CH_{2} = CH - CH = CH_{2} \xrightarrow{HCI}{25^{\circ}C} CH_{3} - CH - CH = CH_{2} + CH_{3} - CH = CH - CH_{2}CH_{2}CH_{2}$$

$$I, 3-Butadiene \qquad 3-Chloro-1-butene \qquad 1-Chloro-2-butene \qquad (22\%)$$

$$\stackrel{1}{C}H_{2} = \stackrel{2}{C}H - \stackrel{3}{C}H = \stackrel{4}{C}H_{2} \xrightarrow{1.2 \text{ addition}}{H - CI} CH_{2} - CH - CH = CH_{2}$$

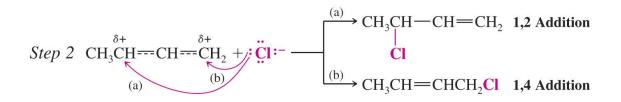
$$\stackrel{+}{H - CI} \qquad 3-Chloro-1-butene$$

$$\stackrel{1}{C}H_{2} = \stackrel{2}{C}H - \stackrel{3}{C}H = \stackrel{4}{C}H_{2} \xrightarrow{1.4 \text{ addition}}{H - CI} CH_{2} - CH = CH - CH_{2}$$

$$\stackrel{+}{H - CI} \qquad 3-Chloro-1-butene$$

$$\stackrel{1}{C}H_{2} = \stackrel{2}{C}H - \stackrel{3}{C}H = \stackrel{4}{C}H_{2} \xrightarrow{1.4 \text{ addition}}{H - CI} CH_{2} - CH = CH - CH_{2}$$

$$\stackrel{+}{H - CI} \qquad H - CI$$


$$1-Chloro-2-butene$$

- § In step 1 hydrogen chloride reacts to add hydrogen to a terminal carbon which gives a stable allyl cation intermediate.
 - Addition of hydrogen to in internal carbon leads to an unstable 10 carbocation

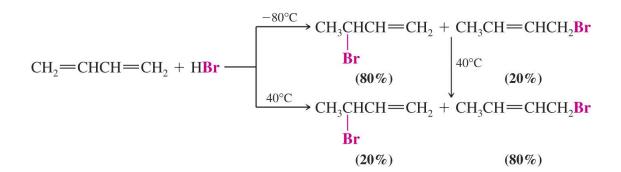
Step 1
:
$$\ddot{C}I_{\rightarrow}H_{+}+CH_{2}=CH-CH=CH_{2} \longrightarrow CH_{3}-CH=CH=CH_{2} \leftrightarrow CH_{3}-CH=CH-CH=CH_{2}+:\ddot{C}I:-$$

An allylic cation
equivalent to
 $CH_{3}-CH=CH=CH=CH_{2}$

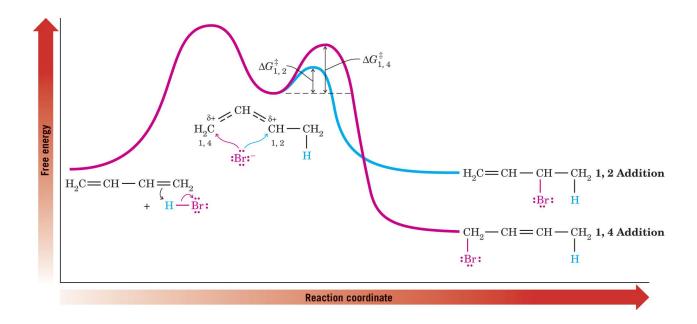
§In step 2 chloride can react at either end of the allyl cation.

• This leads to either 1,2 or 1,4 product

§Other electrophilic reagents add to conjugated dienes in similar fashion


 $CH_2 = CHCH = CH_2 \xrightarrow{HBr}{40^{\circ}C} CH_3 CHBrCH = CH_2 + CH_3 CH = CHCH_2Br$ (20%) (80%)

$$CH_2 = CHCH = CH_2 \xrightarrow[-15^{\circ}C]{Br_2} CH_2BrCHBrCH = CH_2 + CH_2BrCH = CHCH_2Br$$
(54%) (46%)

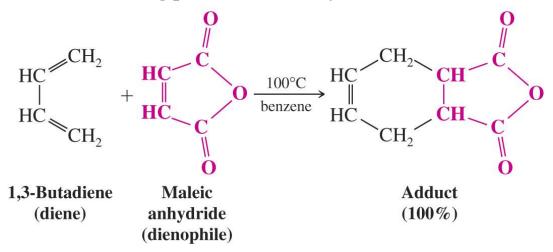

Kinetic Control versus Thermodynamic Control of a Chemical Reaction:

§When HBr adds to 1,3-butadiene the reaction temperature greatly affects the distribution of 1,2 and 1,4 products .

- Low temperature (e.g., -80°C) favors 1,2-addition product
- High temperature (e.g., 40°C) favors 1,4-addition product
- When the mixture of products formed at low temperature is heated, the product ratios change to favor 1,4-addition product

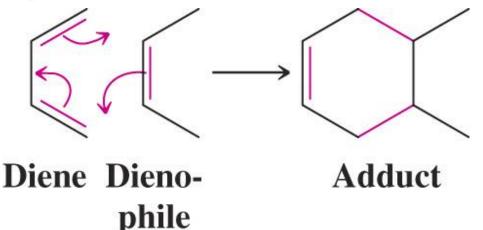
- **§Heating the 1,2-addition product leads to an equilibrium which favors the 1,4-addition product.**
 - Because equilibrium conditions favor the 1,4-addition product it must be the most stable

§At <u>lower temperatures</u> the proportion of products is determined by the relative rates of formation of product.

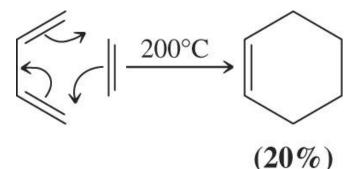

- At low Temp., 1,2-addition product is formed faster (the major product)
- The ΔG^{\ddagger} for formation of 1,2-addition product is lower than for 1,4-addition product
- At low temperatures fewer molecules have enough energy to overcome the higher ΔG^{\ddagger} for formation of the 1,4-addition product.
- The reaction is said to be under kinetic control

§At <u>higher temperatures</u> when an equilibrium is established, the most stable product predominates.

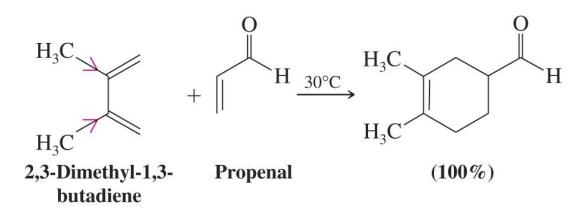
- Enough energy is available to overcome ΔG^{\ddagger} barriers for formation of 1,2- and 1,4-addition products <u>and</u> for the reverse reactions
- The most stable product is the major one
- 1,4-addition product is more stable and is the major product at high temperatures
- The reaction is said to be under thermodynamic control
- §The 1,4 product is most stable because it leads to a disubstituted double bond, while the 1,2 addition product is less stable because it has a monosubstituted double bond.
- §The 1,2-addition product is formed faster because the allyl cation has more δ + charge density at the 2° rather than the 1° carbon

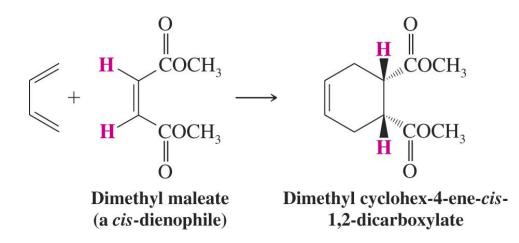

13.12) The Diels-Alder Reaction: A 1,4-Cycloaddition Reaction of Dienes:

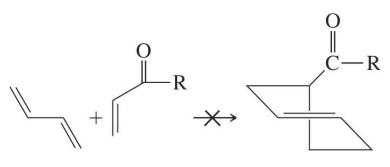
§Heating 1,3-butadiene and maleic anhydride gives a 6membered ring product in 100% yield



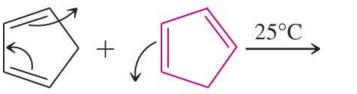
§The general Diels-Alder reaction forms a <u>cylohexene</u> product.

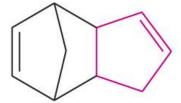

- \bullet Overall, two new s bonds are formed at the expense of two π bonds
- The conjugated diene is a 4π -electron system
- The dienophile ("diene lover") is a 2π -electron system
- The product is called an adduct


- **Factors Favoring the Diels-Alder Reaction:**
 - § The simplest possible example of a Diels-Alder reaction goes at very low yield and requires high temperatures

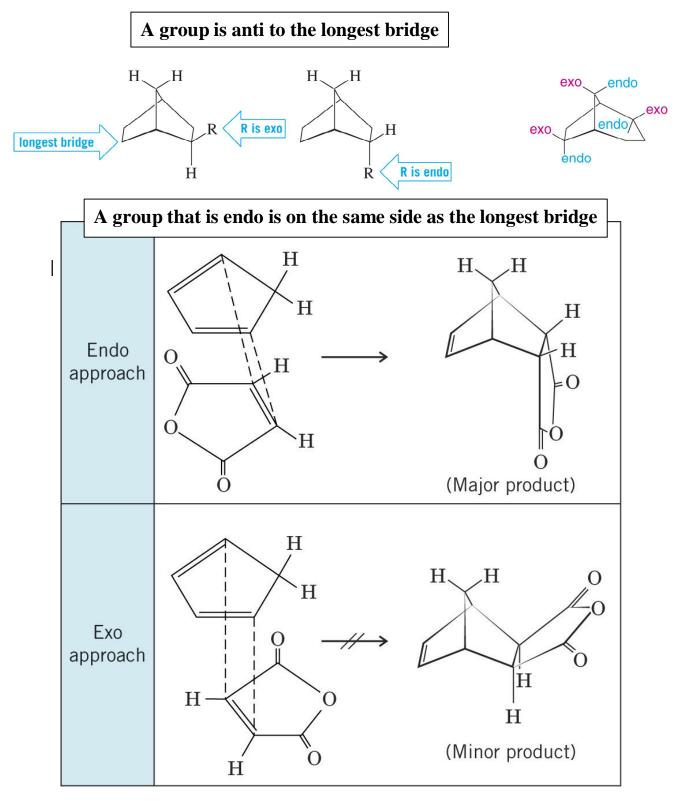

- §To proceed in good yield and at low temperature the dienophile should have <u>electron-withdrawing groups</u>.
 - It also helps if the diene has electron-releasing groups
 - Dienes with electron-donating groups and dienophiles with electron-withdrawing group can also react well together

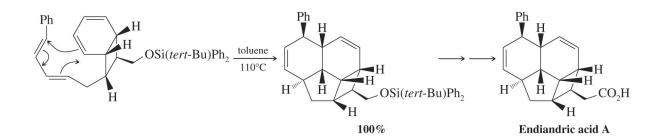
- **Stereochemistry of the Diels-Alder Reaction:**
- § The Diels-Alder reaction is stereospecific *i.e.* the reaction is a syn addition, and the configuration of the dienophile is retained in the product




- §The diene must be in the *s*-cis conformation to react
 - *s*-Trans conformation would lead to formation of a highly unstable trans bond in a 6-membered ring
 - Cyclic dienes which must be in the *s*-cis conformation are highly reactive

Highly strained


- §Cyclopentadiene is so reactive it spontaneously undergoes Diels-Alder reaction with itself at room temperature.
 - This dimer can be "cracked" (undergo retro-Diels-Alder reaction) by heating and the cyclopentadiene product isolated by distillation.


"Dicyclopentadiene"

§The Diels-Alder reaction occurs primarily in an endo rather than an exo fashion when the reaction is kinetically controlled.

Intramolecular Diels-Alder Reactions:

\S Intramolecular reactions are those in which the reacting groups are part of the same molecule

