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CHAPTER 7 
 

SOLUTIONS TO PROBLEMS 
 
7.1 (i) The coefficient on male is 87.75, so a man is estimated to sleep almost one and one-half 
hours more per week than a comparable woman.  Further, tmale = 87.75/34.33 ≈ 2.56, which is 
close to the 1% critical value against a two-sided alternative (about 2.58).  Thus, the evidence for 
a gender differential is fairly strong. 
 
 (ii) The t statistic on totwrk is −.163/.018 ≈ −9.06, which is very statistically significant.  The 
coefficient implies that one more hour of work (60 minutes) is associated with .163(60) ≈ 9.8 
minutes less sleep. 
 
 (iii) To obtain 2

rR , the R-squared from the restricted regression, we need to estimate the 
model without age and age2.  When age and age2  are both in the model, age has no effect only if 
the parameters on both terms are zero. 
 
7.3 (i) The t statistic on hsize2 is over four in absolute value, so there is very strong evidence that 
it belongs in the equation.  We obtain this by finding the turnaround point;  this is the value of 
hsize that maximizes ˆsat  (other things fixed):  19.3/(2 ⋅2.19) ≈ 4.41.  Because hsize is measured 
in hundreds, the optimal size of graduating class is about 441. 
 
 (ii) This is given by the coefficient on female (since black = 0):  nonblack females have SAT 
scores about 45 points lower than nonblack males.  The t statistic is about –10.51, so the 
difference is very statistically significant.  (The very large sample size certainly contributes to 
the statistical significance.) 
 
 (iii) Because female = 0, the coefficient on black implies that a black male has an estimated 
SAT score almost 170 points less than a comparable nonblack male.  The t statistic is over 13 in 
absolute value, so we easily reject the hypothesis that there is no ceteris paribus difference. 
 
 (iv) We plug in black = 1, female = 1 for black females and black = 0 and female = 1 for 
nonblack females.  The difference is therefore –169.81 + 62.31 = −107.50.  Because the estimate 
depends on two coefficients, we cannot construct a t statistic from the information given.  The 
easiest approach is to define dummy variables for three of the four race/gender categories and 
choose nonblack females as the base group.  We can then obtain the t statistic we want as the 
coefficient on the black female dummy variable. 
 
7.5 (i) Following the hint, colGPA  = 0β̂  + 0̂δ (1 – noPC) + 1̂β hsGPA + 2β̂ ACT = ( 0β̂  + 0̂δ ) − 

0̂δ noPC + 1̂β hsGPA + 2β̂ ACT.  For the specific estimates in equation (7.6), 0β̂  = 1.26 and 0̂δ  = 
.157, so the new intercept is 1.26 + .157 = 1.417.  The coefficient on noPC is –.157. 
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 (ii) Nothing happens to the R-squared.  Using noPC in place of PC is simply a different way 
of including the same information on PC ownership. 
 
 (iii) It makes no sense to include both dummy variables in the regression:  we cannot hold 
noPC fixed while changing PC.  We have only two groups based on PC ownership so, in 
addition to the overall intercept, we need only to include one dummy variable.  If we try to 
include both along with an intercept we have perfect multicollinearity (the dummy variable trap). 
 
7.7 (i) Write the population model underlying (7.29) as  
 
  inlf  =  0β  + 1β nwifeinc + 2β educ + 3β exper + 4β exper2 + 5β age 
    + 6β kidslt6 + 7β kidsage6 + u,    
 
plug in inlf = 1 – outlf, and rearrange: 
 
  1 – outlf  =  0β  + 1β nwifeinc + 2β educ + 3β exper + 4β exper2 + 5β age 
   + 6β kidslt6 + 7β kidsage6 + u, 
or 
  outlf  =  (1 − 0β ) − 1β nwifeinc − 2β educ − 3β exper  − 4β exper2 − 5β age 
   − 6β kidslt6 − 7β kidsage6 − u, 
 
The new error term, −u, has the same properties as u.  From this we see that if we regress outlf on 
all of the independent variables in (7.29), the new intercept is 1 − .586 = .414 and each slope 
coefficient takes on the opposite sign from when inlf is the dependent variable.  For example, the 
new coefficient on educ is −.038 while the new coefficient on kidslt6 is .262. 
 
 (ii) The standard errors will not change.  In the case of the slopes, changing the signs of the 
estimators does not change their variances, and therefore the standard errors are unchanged (but 
the t statistics change sign).  Also, Var(1 − 0β̂ ) = Var( 0β̂ ), so the standard error of the intercept 
is the same as before. 
 
 (iii) We know that changing the units of measurement of independent variables, or entering 
qualitative information using different sets of dummy variables, does not change the R-squared.  
But here we are changing the dependent variable.  Nevertheless, the R-squareds from the 
regressions are still the same.  To see this, part (i) suggests that the squared residuals will be 
identical in the two regressions.  For each i the error in the equation for outlfi is just the negative 
of the error in the other equation for inlfi, and the same is true of the residuals.  Therefore, the 
SSRs are the same.  Further, in this case, the total sum of squares are the same.  For outlf we 
have  
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which is the SST for inlf.  Because R2 = 1 – SSR/SST, the R-squared is the same in the two 
regressions. 
 
7.9 (i) Plugging in u = 0 and d = 1 gives 1 0 0 1 1( ) ( ) ( )f z zβ δ β δ= + + + . 
 
 (ii) Setting * *

0 1( ) ( )f z f z=  gives * *
0 1 0 0 1 1( ) ( )z zβ β β δ β δ+ = + + +  or *

0 10 zδ δ= + .  
Therefore, provided 1 0δ ≠ , we have *

0 1/z δ δ= − .  Clearly, *z is positive if and only if 0 1/δ δ  is 
negative, which means 0 1 and δ δ  must have opposite signs. 
 
 (iii) Using part (ii) we have * .357 / .030 11.9totcoll = =  years. 
 
 (iv) The estimated years of college where women catch up to men is much too high to be 
practically relevant.  While the estimated coefficient on female totcoll⋅  shows that the gap is 
reduced at higher levels of college, it is never closed – not even close.  In fact, at four years of 
college, the difference in predicted log wage is still .357 .030(4) .237− + = − , or about 21.1% less 
for women. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C7.1 (i) The estimated equation is 
 
 colGPA  = 1.26 + .152 PC + .450 hsGPA + .0077 ACT − .0038 mothcoll 
   (0.34)  (.059)  (.094)  (.0107)  (.0603) 

  + .0418 fathcoll 
   (.0613) 

 n = 141 ,    R2 = .222. 
 
The estimated effect of PC is hardly changed from equation (7.6), and it is still very significant, 
with tpc ≈  2.58. 
 
 (ii) The F test for joint significance of mothcoll and fathcoll, with 2 and 135 df, is about .24 
with p-value ≈  .78; these variables are jointly very insignificant.  It is not surprising the 
estimates on the other coefficients do not change much when mothcoll and fathcoll are added to 
the regression. 
 
 (iii) When hsGPA2 is added to the regression, its coefficient is about .337 and its t statistic is 
about 1.56.  (The coefficient on hsGPA is about –1.803.)  This is a borderline case.  The 
quadratic in hsGPA has a U-shape, and it only turns up at about hsGPA* = 2.68, which is hard to 
interpret.  The coefficient of main interest, on PC, falls to about .140 but is still significant.  
Adding hsGPA2 is a simple robustness check of the main finding. 
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C7.3 (i) H0: 13β = 0.  Using the data in MLB1.RAW gives 13β̂  ≈  .254, se( 13β̂ ) ≈  .131.  The t 
statistic is about 1.94, which gives a p-value against a two-sided alternative of just over .05.  
Therefore, we would reject H0 at just about the 5% significance level.  Controlling for the 
performance and experience variables, the estimated salary differential between catchers and 
outfielders is huge, on the order of 100⋅[exp(.254) – 1] ≈  28.9% [using equation (7.10)]. 
 
 (ii) This is a joint null, H0: 9β  = 0, 10β  = 0, …, 13β  = 0.  The F statistic, with 5 and 339 df, is 
about 1.78, and its p-value is about .117.  Thus, we cannot reject H0 at the 10% level. 
 
 (iii) Parts (i) and (ii) are roughly consistent.  The evidence against the joint null in part (ii) is 
weaker because we are testing, along with the marginally significant catcher, several other 
insignificant variables (especially thrdbase and shrtstop, which has absolute t statistics well 
below one). 
 
C7.5 The estimated equation is 
 
 log( )salary  = 4.30 + .288 log(sales) + .0167 roe − .226 rosneg 
   (0.29)  (.034)    (.0040)  (.109) 

 n = 209,   R2 = .297,   2R = .286. 
 
The coefficient on rosneg implies that if the CEO’s firm had a negative return on its stock over 
the 1988 to 1990 period, the CEO salary was predicted to be about 22.6% lower, for given levels 
of sales and roe.  The t statistic is about –2.07, which is significant at the 5% level against a two-
sided alternative. 
 
C7.7 (i) When educ = 12.5, the approximate proportionate difference in estimated wage between 
women and men is −.227 − .0056(12.5) = −.297.  When educ = 0, the difference is −.227.  So the 
differential at 12.5 years of education is about 7 percentage points greater. 
 
 (ii) We can write the model underlying (7.18) as 
 
 log(wage) = 0β  + 0δ  female + 1β educ + 1δ  female ⋅ educ + other factors 

  = 0β  + ( 0δ  + 12.5 1δ ) female + 1β educ + 1δ  female ⋅ (educ – 12.5) 

    + other factors 

  ≡ 0β  + 0θ  female + 1β educ + 1δ  female ⋅ (educ – 12.5) + other factors, 
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where 0θ  ≡ 0δ  + 12.5 1δ  is the gender differential at 12.5 years of education.  When we run this 
regression we obtain about –.294 as the coefficient on female (which differs from –.297 due to 
rounding error).  Its standard error is about .036. 
 
 (iii) The t statistic on female from part (ii) is about –8.17, which is very significant.  This is 
because we are estimating the gender differential at a reasonable number of years of education, 
12.5, which is close to the average.  In equation (7.18), the coefficient on female is the gender 
differential when educ = 0.  There are no people of either gender with close to zero years of 
education, and so we cannot hope – nor do we want to – to estimate the gender differential at 
educ = 0. 
 
C7.9 (i) About .392, or 39.2%. 
 
 (ii) The estimated equation is  
 
 401e k  =  −.506 + .0124 inc  − .000062 inc2  +  .0265 age  −  .00031 age2 − .0035 male 
   (.081)  (.0006)  (.000005)    (.0039)  (.00005)  (.0121) 

 n = 9,275,   R2 = .094. 
 
 (iii) 401(k) eligibility clearly depends on income and age in part (ii).  Each of the four terms 
involving inc and age have very significant t statistics.  On the other hand, once income and age 
are controlled for, there seems to be no difference in eligibility by gender.  The coefficient on 
male is very small – at given income and age, males are estimated to have a .0035 lower 
probability of being 401(k) eligible – and it has a very small t statistic. 
 
 (iv) Somewhat surprisingly, out of 9,275 fitted values, none is outside the interval [0,1].  The 
smallest fitted value is about .030 and the largest is about .697.  This means one theoretical 
problem with the LPM – the possibility of generating silly probability estimates – does not 
materialize in this application. 
 
 (v) Using the given rule, 2,460 families are predicted to be eligible for a 401(k) plan. 
 
 (vi) Of the 5,638 families actually ineligible for a 401(k) plan, about 81.7 are correctly 
predicted not to be eligible.  Of the 3,637 families actually eligible, only 39.3 percent are 
correctly predicted to be eligible. 
 
 (vii) The overall percent correctly predicted is a weighted average of the two percentages 
obtained in part (vi).  As we saw there, the model does a good job of predicting when a family is 
ineligible.  Unfortunately, it does less well – predicting correctly less than 40% of the time – in 
predicting that a family is eligible for a 401(k). 
    
 (viii) The estimated equation is  
 
 401e k  =  −.502 + .0123 inc  − .000061 inc2  +  .0265 age  −  .00031 age2  
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   (.081)  (.0006)  (.000005)    (.0039)  (.00005)   

− .0038 male  +   .0198 pira 
  (.0121)   (.0122) 

 n = 9,275,   R2 = .095. 
 
The coefficient on pira means that, other things equal, IRA ownership is associated with about a 
.02 higher probability of being eligible for a 401(k) plan.  However, the t statistic is only about 
1.62, which gives a two-sided p-value = .105.  So pira is not significant at the 10% level against 
a two-sided alternative. 
 
C7.11 (i) The average is 19.072, the standard deviation is 63.964, the smallest value is –502.302, 
and the largest value is 1,536.798.  Remember, these are in thousands of dollars. 
 
 (ii) This can be easily done by regressing nettfa on e401k and doing a t test on ˆ

e401kβ ; the 
estimate is the average difference in nettfa for those eligible for a 401(k) and those not eligible.  
Using the 9,275 observations gives ˆ 18.858 and 14.01.e401k e401ktβ = =  Therefore, we strongly 
reject the null hypothesis that there is no difference in the averages.  The coefficient implies that, 
on average, a family eligible for a 401(k) plan has $18,858 more on net total financial assets. 
 
 (iii) The equation estimated by OLS is  
 
 nettfa   = 23.09  +  9.705 e401k   −   .278 inc  +  .0103 inc2  −   1.972 age  +   .0348 age2 
  (9.96)  (1.277)     (.075) (.0006) (.483) (.0055)  
 
 n = 9,275,  R2 = .202 
 
Now, holding income and age fixed, a 401(k)-eligible family is estimated to have $9,705 more in 
wealth than a non-eligible family.  This is just more than half of what is obtained by simply 
comparing averages. 
 
 (iv) Only the interaction e401k⋅(age − 41) is significant.  Its coefficient is .654 (t = 4.98).  It 
shows that the effect of 401(k) eligibility on financial wealth increases with age.  Another way to 
think about it is that age has a stronger positive effect on nettfa for those with 401(k) eligibility.  
The coefficient on e401k⋅(age − 41)2 is −.0038 (t statistic = −.33), so we could drop this term. 
 
 (v) The effect of e401k in part (iii) is the same for all ages, 9.705.  For the regression in part 
(iv), the coefficient on e401k from part (iv) is about 9.960, which is the effect at the average age, 
age = 41.  Including the interactions increases the estimated effect of e401k, but only by $255.  If 
we evaluate the effect in part (iv) at a wide range of ages, we would see more dramatic 
differences. 
 
 (vi) I chose fsize1 as the base group.  The estimated equation is  
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 nettfa   = 16.34  +  9.455 e401k   −   .240 inc  +  .0100 inc2  −   1.495 age  +   .0290 age2 
  (10.12)  (1.278)     (.075) (.0006) (.483) (.0055)  
 
    −   .859 fsize2  −  4.665 fsize3  −  6.314 fsize4  −  7.361 fsize5 
  (1.818) (1.877) (1.868) (2.101) 
 
 n = 9,275,  R2 = .204,  SSR = 30,215,207.5 
 
The F statistic for joint significance of the four family size dummies is about 5.44.  With 4 and 
9,265 df, this gives p-value = .0002.  So the family size dummies are jointly significant. 
 
 (vii) The SSR for the restricted model is from part (vi):  SSRr = 30,215,207.5.  The SSR for 
the unrestricted model is obtained by adding the SSRs for the five separate family size 
regressions.  I get SSRur = 29,985,400.  The Chow statistic is F = [(30,215,207.5 − 29,985,400)/ 
29,985,400]*(9245/20) ≈ 3.54.  With 20 and 9,245 df, the p-value is essentially zero.  In this 
case, there is strong evidence that the slopes change across family size.  Allowing for intercept 
changes alone is not sufficient.  (If you look at the individual regressions, you will see that the 
signs on the income variables actually change across family size.) 
 
C7.13 (i) 412/660 ≈ .624. 
 
 (ii) The OLS estimates of the LPM are  
 
 ecobuy  = .424   −  .803 ecoprc   +  .719 regprc  +  .00055 faminc  +   .024 hhsize  
  (.165)  (.109)     (.132) (.00053) (.013)   
 
   +   .025 educ   −  .00050 age  
  (.008) (.00125)  
 
 n = 660,  R2 = .110 
 
If ecoprc increases by, say, 10 cents (.10), then the probability of buying eco-labeled apples falls 
by about .080.  If regprc increases by 10 cents, the probability of buying eco-labeled apples 
increases by about .072.  (Of course, we are assuming that the probabilities are not close to the 
boundaries of zero and one, respectively.) 
 
 (iii) The F test, with 4 and 653 df, is 4.43, with p-value = .0015.  Thus, based on the usual F 
test, the four non-price variables are jointly very significant.  Of the four variables, educ appears 
to have the most important effect.  For example, a difference of four years of education implies 
an increase of .025(4) = .10 in the estimated probability of buying eco-labeled apples.  This 
suggests that more highly educated people are more open to buying produce that is 
environmentally friendly, which is perhaps expected.  Household size (hhsize) also has an effect.  
Comparing a couple with two children to one that has no children – other factors equal – the 
couple with two children has a .048 higher probability of buying eco-labeled apples. 
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 (iv) The model with log(faminc) fits the data slightly better: the R-squared increases to about 
.112.  (We would not expect a large increase in R-squared from a simple change in the functional 
form.)  The coefficient on log(faminc) is about .045 (t = 1.55).  If log(faminc) increases by .10, 
which means roughly a 10% increase in faminc, then P(ecobuy = 1) is estimated to increase by 
about .0045, a pretty small effect. 
 
 (v) The fitted probabilities range from about .185 to 1.051, so none are negative.  There are 
two fitted probabilities above 1, which is not a source of concern with 660 observations. 
 
 (vi) Using the standard prediction rule – predict one when .5iecobuy ≥  and zero otherwise – 
gives the fraction correctly predicted for ecobuy = 0 as 102/248 ≈ .411, so about 41.1%.  For 
ecobuy = 1, the fraction correctly predicted is 340/412 ≈ .825, or 82.5%.  With the usual 
prediction rule, the model does a much better job predicting the decision to buy eco-labeled 
apples.  (The overall percent correctly predicted is about 67%.) 
 


